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Dictionnaires : Exercices complémentaires   

Partie 1 : Manipulation des dictionnaires 
 

Exercice 1 : Températures 

On dispose des températures à Bordeaux à 8h00 dans un dictionnaire : 
temp={'J1':-10,'J2':-9, 'J3':-4, 'J4':0, 'J5':-1, 'J6':4, 'J7':-5, 'J8':1, 'J9':-2} 

 
1. Écrire une fonction moyenne  qui prend en argument un dictionnaire d du type de celui 

défini ci-dessus et qui renvoie la valeur moyenne des températures. 
temp={'J1':-10,'J2':-9,'J3':-4, 'J4':0, 'J5':-1, 'J6':4, 'J7':-5, 'J8':1, 'J9':-2} 
print(moyenne(temp))#-2.888888888888889 
 

2. Écrire une fonction froid(d,t0) qui prend en paramètre un dictionnaire d du type de 
temp et une temperature t0. La fonction renvoie la liste des jours et le nombre de jours 
pour lesquels la température a été inférieure à t0. 

print( froid(temp, -1) ) #(5, ['J1', 'J2', 'J3', 'J7', 'J9']) 
 

Exercice 2 : Moyennes 

Ecrire une fonction nomMoy qui prend en paramètre un dictionnaire dont les clés sont les 
noms des élèves et les valeurs sont les listes des notes et qui renvoie un autre dictionnaire 
dont les clés sont le nom des élèves et les valeurs la moyenne de leur note. 

Exemple :  
print( nomMoy({'Lina':[12,15,12], 'Gabin':[15,17,16], 'Léa':[8,18,7]})) 
#{'Lina': 13.0, 'Gabin': 16.0, 'Léa': 11.0} 
 
 

Exercice 3 : Matrices 

1. Proposer une structure de dictionnaire permettant de manipuler des matrices en Python 
 

On s’intéresse ici aux matrices parcimonieuses, c’est-à-dire dont la plupart des coefficients 
sont nuls. Une telle matrice M de dimensions (n, p) pourra être codée par un dictionnaire 
ayant pour couples clefs/valeurs : 

‘dim’ : (n, p) 
→(i , j ) : Mi j pour chaque couple (i , j ) tel que Mi , j ≠ 0. 
 

2. Définir le dictionnaire qui code la matrice :  
 0  0   0   0 

0  0   4   0 
 

 
3. Proposer une fonction sommeMat de 2 matrices (de même dimension). 

mat = {'dim':(2, 4), (1, 2):4} 
mat2= {'dim':(2, 4), (0,0):3, (1, 2):4} 
print( sommeMat(mat,mat2) ) #{'dim': (2, 4), (1, 2): 8, (0, 0): 3} 

 

4. Si la première matrice contient c coefficients non nuls, et la seconde c′, quelle est la 
complexité temporelle de cet algorithme ? 

Quelle serait la complexité dans le cas d’une matrice représentée sous forme de liste de listes ? 
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Exercice 4 :  Temps de parcours 

Un site de voyages permet de calculer les temps de parcours entre 2 villes sous forme d’un 
dictionnaire qui comporte les 4 clefs suivantes : ’jours’, ’heures’, ’minutes’ et ’secondes’ dont les 
valeurs associées représentent respectivement les durées en jours, heures, minutes et 
secondes du voyage, le tout de manière unique. 

Exemple :  27 heures se traduit par 1 jour et 3 heures.  

Si le voyage comporte plusieurs escales, on souhaite connaître la durée totale que vous 
aurez passée dans les transports. 

Pour résoudre ce problème, on le décompose en plusieurs sous-problèmes plus simples à 
résoudre. 

1. Écrire une fonction decomposition(duree) qui prend en paramètre une durée exprimée 
en secondes et renvoie un dictionnaire dont les valeurs sont entières et dont les clefs sont 
’jours’, ’heures’, ’minutes’ et ’secondes’. 

dRes = decomposition( 100124 )  
print(dRes) #{'jours': 1, 'heures': 3, 'minutes': 48, 'secondes': 44} 
dRes2 = decomposition( 1000 )  
print(dRes2)#{'jours': 0, 'heures': 0, 'minutes': 16, 'secondes': 40} 

 
2. Écrire la fonction inverse secondes(dico) qui prend en argument un dictionnaire du type 

précédent pour renvoyer la valeur correspondante en secondes. 
nbs = secondes(dRes) 
print(nbs) #100124 

 
3. A l’aide des 2 fonctions précédentes, écrire la fonction addition(dico1, dico2)  qui qui va 

additionner correctement 2 dictionnaires d1 et d2  correspondant à deux voyages 
successifs et renvoyer un dictionnaire du même type correspondant à la durée totale du 
voyage. 

dTotal = addition(dRes,dRes2) 
print(dTotal) #{'jours': 1, 'heures': 4, 'minutes': 5, 'secondes': 24} 
 
4. Écrire une fonction affichage(dico)  qui affiche le temps total passé en transport  de 

manière un peu plus lisible au format ci-dessous. 
affichage(dTotal) #Le voyage dure au total  1  jours,  4  heures,  5  minutes et  24  seco
ndes 
 

 
5. Ecrire une fonction tempsTotal( liste_de_durees ) qui prend en paramètre une liste (de 

taille arbitraire) de durées sous la forme des dictionnaires précédents et renvoie le 
temps total de parcours sous forme de dictionnaire. 

L= [dRes, dRes2] 
dtot = tempsTotal(L) 
affichage(dtot) 

 

Partie 2 : Dictionnaire et table de hachage 

Exercice 5 : Double hachage 

Le double hachage est l’une des meilleures méthodes connues pour l’adressage ouvert. Il 
utilise une fonction de hachage de la forme : 

h : N × N → [0, m – 1] 
(k, i )   → (h1(k) + ih2(k))  mod  m 

1. Insérer les clés : 5,28,19,15,20,33,12,17,10 dans une table de taille m = 13 avec h1(k) 
= k mod 13 et h2(k) = 1 + (k mod 12). 
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Valeur de la 
clé k 

h1(k) h2(k) h(k) 

5  

 

  

28  

 

  

19  

 
   

15 

 
   

20  

 

  

33  

 

  

12  

 

  

17  

 

  

10  

 

  

Représentation de la table :  
Indice   

0  
 

1 
 
 

 
2 

 
 

 
3 

 
 

 
4 

 
 

 
5 

 
 

 
6 

 
 

 
7 

 
 

 
8 

 
 

 
9 

 
 

 
10 

 
 

 
11 
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2. Proposer une fonction double_hachage qui prend en argument une table de hachage 
tab_h de type array et une clé c (entier)  qui renvoie la valeur de h(c) et agit par effet de 
bord sur tab_h. 

import numpy as np 
 
def double_hachage( tab_h , k   ): 
    """ entrées : tab_h : array, table de hachage 
                : k, entier qui correspond à la valeur à hacher 
        sortie : h, la valeur hachée de k 
        tab_h est modifié par effet de bord 
    """ 

4  

9

Exercice 6 : Polynômes 
On considère des polynômes non nuls à coefficients entiers de degré quelconque mais qui 
ne contiennent pas plus de 5 monômes. On utilise un tableau de longueur 16 = 8×2 pour 
stocker les couples (degré, coefficient) dans lequel on pourrait stocker au maximum huit 
couples. Les places non occupées contiennent la valeur -1 . 
La fonction de hachage h est la fonction identité : pour tout n ∈ N , h(n) = n. 
Donc à un degré qui vaut 10 , on associe le nombre 10, soit h(10) = 10.  
Ensuite, avec 10%8, on obtient l’indice 2 et à cet indice on écrit le degré, (la clé), suivi du 
coefficient, (la valeur). 
Exemple, le polynôme 8 + 3x10 − 5x12 est stocké dans un tableau de la forme : 

Indice degré coefficient 
0 0 8 
1 -1 -1 
2 10 3 
3 -1 -1 
4 12 -5 

. . . . . . . . . 

1. Donner le tableau correspondant au polynôme :  2x5 − 3x34 + 4x105. 
Indice degré coefficient 

0   
1   
2   
3   
4   

5   
2. Quel est le problème avec, par exemple :  

  8 − 5x2 + 3x10 ?  

3. En cas de collision, on décide d’utiliser la première place libre suivante. Les 
monômes sont entrés dans le tableau suivant l’ordre de lecture.  

Donner un exemple de polynôme de degré minimum qui génère une collision pour 
chaque monôme excepté le premier. 

 
4. On envisage une autre possibilité de stockage avec 2 tableaux : 

 un tableau pour les couples (degré, coefficient)  
 un tableau pour les indices,  

les 2 tableaux ayant pour capacité 8 .  

Avec le polynôme 4x3 −2x5 + 4x9, on obtient les 2 tableaux de la manière suivante : 
 Dans le 1er tableau, on écrit chaque degré avec le coefficient correspondant 

suivant l’ordre des   degrés et on complète le tableau avec des 0. 
 Dans le 2ème tableau, on calcule d %8 où d est un degré. On place à l’indice 

trouvé l’indice où on trouve le couple (degré, coefficient) dans le premier tableau. On 
complète le tableau avec des -1.  

Extraits des tableaux : 
 
 
 
 
 
 
Donner les 2 tableaux 
correspondant au stockage  

du polynôme 3x5 − x18 + 7x20. 
 

Indice degré coefficient 
0 3 4 
1 5 -2 
2 9 4 
3 0 0 

. . . . . . . . . 
 

Indice IndiceCouple 
0 -1 
1 2 
2 -1 
3 0 
4 -1 
5 1 

 
Indice degré coefficient 

0   
1   
2   
3   
4   
5   
6   
7   

 

Indice IndiceCouple 
0  
1  
2  
3  
4  
5  
6  
7  

 


