
Entrée[2]: from sklearn.datasets import load_iris
import numpy as np
iris = load_iris()

iris

iris['data'] numpy

iris['target']

k d d.k d['k']
iris.data iris.target

Entrée[3]: np.shape(iris.data)
il y a 150 iris, chacun ayant 4 caractéristiques

Sortie[3]: (150, 4)

Entrée[4]: iris.data[0]
pour obtenir les caracteristiques du 1er iris

Entrée[5]: iris.target[0]
l'étiquette du 1er iris : 0 donc setosa

Sortie[4]: array([5.1, 3.5, 1.4, 0.2])

Sortie[5]: 0

Entrée[6]: import matplotlib.pyplot as plt

X1_setosa =[]
X2_setosa = []
X1_versicolor= []
X2_versicolor= []
X1_virginica = []
X2_virginica = []

Création des listes avec les 2 1eres caracteristiques de chaque classe (0,1,2):
for i in range(len(iris.target)): # recupération de chaque iris
liris = iris.data[i]
classe = iris.target[i]

if classe == 0 :
X1_setosa.append(liris[0])
X2_setosa.append(liris[1])

elif classe ==1:
X1_versicolor.append(liris[0])
X2_versicolor.append(liris[1])

else :
X1_virginica.append(liris[0])
X2_virginica.append(liris[1])

Tracé du graphique:
plt.title('Espèces d iris')
plt.xlabel('Longueur de sepale') # titre de l'axe des abscisses
plt.ylabel('Largeur de sepale') # titre de l'axe des ordonnées

""" #version avec plot
plt.plot(X1_setosa,X2_setosa, marker='o', color='g', markersize=3, linestyle='', label="Setosa")
plt.plot(X1_versicolor,X2_versicolor, marker='o', color='r', markersize=3, linestyle='', label="Versicolor")
plt.plot(X1_virginica,X2_virginica, marker='o', color='b', markersize=3, linestyle='', label="Virginica")
plt.legend()
plt.show()
"""
#version avec scatter
plt.scatter(X1_setosa,X2_setosa, color='g', label='setosa')
plt.scatter(X1_versicolor,X2_versicolor, color='r', label='versicolor')
plt.scatter(X1_virginica,X2_virginica, color='b', label='Virginica')
plt.legend()
plt.show()

Entrée[1]: X_setosa = [[],[],[],[]]
X_versicolor= [[],[],[],[]]
X_virginica= [[],[],[],[]]

Création des listes avec les 2 1eres caracteristiques de chaque classe (0,1,2):
for i in range(len(iris.target)): # recupération de chaque iris

liris = iris.data[i]
classe = iris.target[i]

if classe == 0 :
for j in range (4) :
X_setosa[j].append(liris[j])

elif classe ==1:
for j in range (4) :
X_versicolor[j].append(liris[j])

else :
for j in range (4) :
X_virginica[j].append(liris[j])

Tracé des graphiques:
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,7))
fig.suptitle('Espèces d iris')

ax1.set_xlabel('Longueur de sepale') # titre de l'axe des abscisses
ax1.set_ylabel('Largeur de sepale') # titre de l'axe des ordonnées
"""
ax1.plot(X_setosa[0],X_setosa[1], marker='o', color='g', markersize=3, linestyle='', label="Setosa")
ax1.plot(X_versicolor[0],X_versicolor[1], marker='o', color='r', markersize=3, linestyle='', label="Versicolor")
ax1.plot(X_virginica[0],X_virginica[1], marker='o', color='b', markersize=3, linestyle='', label="Virginica")
"""
ax1.scatter(X_setosa[0],X_setosa[1], color='g', label='setosa')
ax1.scatter(X_versicolor[0],X_versicolor[1], color='r', label='versicolor')
ax1.scatter(X_virginica[0],X_virginica[1], color='b', label='Virginica')

ax1.legend()

ax2.set_xlabel('Longueur de petale') # titre de l'axe des abscisses
ax2.set_ylabel('Largeur de petale') # titre de l'axe des ordonnées
ax2.scatter(X_setosa[2],X_setosa[3], color='g', label='setosa')
ax2.scatter(X_versicolor[2],X_versicolor[3], color='r', label='versicolor')
ax2.scatter(X_virginica[2],X_virginica[3], color='b', label='Virginica')
"""
ax2.plot(X_setosa[2],X_setosa[3], marker='o', color='g', markersize=3, linestyle='', label="Setosa")
ax2.plot(X_versicolor[2],X_versicolor[3], marker='o', color='r', markersize=3, linestyle='', label="Versicolor")
ax2.plot(X_virginica[2],X_virginica[3], marker='o', color='b', markersize=3, linestyle='', label="Virginica")
"""

ax2.legend()
plt.plot()

X_train
X_test

separer(X, Y, p)

X_train
Y_train

X_test Y_test

numpy_.array_

Traceback (most recent call last):
 File "<input>", line 6, in <module>
NameError: name 'iris' is not defined

Entrée[6]: def separer(X, Y, p):
Xtrain, Xtest, Ytrain, Ytest = [], [], [], []
for i in range(len(X)):

if i <= p * len(X) :
Xtrain.append(X[i])
Ytrain.append(Y[i])

else:
Xtest.append(X[i])
Ytest.append(Y[i])

return np.array(Xtrain), np.array(Xtest), np.array(Ytrain), np.array(Ytest)

Xtrain, Xtest, Ytrain, Ytest = separer(iris.data, iris.target, .8) # cette séparation n'est pas deale avec notre jeu de données

2e version + adaptée au jeu de données iris:
on met p*10 (p correspondant au %) iris sur 10 dans Xtrain , Ytrain, et 1/5 dans Xtest, Ytest dans l'ordre ou ils sont stocké
def separer2(X, Y, p):

nb = p*10
cptr = 0
Xtrain, Xtest, Ytrain, Ytest = [], [], [], []
for i in range(len(X)):
if cptr <nb :
#if i%nb !=0 : #

Xtrain.append(X[i])
Ytrain.append(Y[i])
cptr +=1

else:
Xtest.append(X[i])
Ytest.append(Y[i])
cptr +=1
if cptr == 10 :
cptr = 0

return np.array(Xtrain), np.array(Xtest), np.array(Ytrain), np.array(Ytest)

Xtrain, Xtest, Ytrain, Ytest = separer(iris.data, iris.target, .8)
Xtrain, Xtest, Ytrain, Ytest = separer2(iris.data, iris.target, .8)

Entrée[7]: print(Xtrain[0]) # caractéristiques
print(Ytrain[0]) # variété

d(x, y)

Entrée[14]: def d(x, y):
return ((x[0] ‐ y[0])**2 + (x[1] ‐ y[1])**2 + (x[2] ‐ y[2])**2 + (x[3] ‐ y[3])**2)**0.5

def d(x, y) : # calcul de distances pour des tailles de vecteurs quelconques
s=0
for i in range (0, len(x)):

s = s + (x[i] ‐ y[i])**2
return s**0.5

d2(x, y)

Entrée[15]: def d2(x, y):
z = x ‐ y
return z.T.dot(z)

voisins(x, X, k, dist)

[5.1 3.5 1.4 0.2]
0

Entrée[16]: def voisins(x, X, k, dist):

listeDistanceIndices=[] # liste de listes[distance, indice]
for i in range (len(X)) :
distance = dist(x, X[i])
listeDistanceIndices.append([distance, i])

listeDistanceIndices.sort()
lesVoisins = [] # liste qui ne contiendra que les indices
for i in range(k):
lesVoisins.append(listeDistanceIndices[i][1])

return lesVoisins

k=9
x = Xtest[0]
V = voisins(x, Xtrain, k, d)

variante en utilisant la fonction sorted
def voisins(x, X, k, dist): # renvoie les k plus proches voisins de x dans X

indices = sorted(range(len(X)), key=lambda i: dist(x, X[i]))
return indices[:k]

x = Xtest[0]
V = voisins(x, Xtrain, k, d)

majoritaire(L)

Entrée[17]: def majoritaire(L):
compte = {} # compte[e] = nombre d'occurrences de e dans L
for e in L:

if e in compte:
compte[e] += 1

else:
compte[e] = 1

kmax = L[0]
for k in compte:

if compte[k] > compte[kmax]:
kmax = k

return kmax
test de la fonction en affichant la classe majoritaire du jeu de données
print(majoritaire(iris.target))

version 2 en utilisant la fonction get des dictionnaires
def majoritaire(L): # renvoie la classe qui apparaît le plus souvent dans L

compte = {}
for e in L:

compte[e] = compte.get(e, 0) + 1
return max(compte, key=compte.get)

knn(x, X, Y, k, dist)

Entrée[18]: def knn(x, X, Y, k, dist): # renvoie la classe prédite pour x par l'algorithme des k plus proches voisins
détermination des indices des k plus proches voisins
lesVoisins = voisins(x, X, k, dist)

détermination des classes des k plus proches voisins
lesClasses = [Y[i] for i in lesVoisins]

determination de la classe majoritaire des k voisins obtenues qui sera la classe de x
laClasseMajoritaire = majoritaire(lesClasses)
return laClasseMajoritaire

affichePrediction(x, classe_x , Xtrain , Ytrain) x k x

0

Entrée[21]: def affichePrediction(x, k , Xtrain , Ytrain):

X_setosa = [[],[],[],[]]
X_versicolor= [[],[],[],[]]
X_virginica= [[],[],[],[]]

classe_x = knn(x, Xtrain, Ytrain , k, d)

coul = ['g','r','b']
neighbors_i = voisins(x, Xtrain, 7, d2)
neighbors = Xtrain[neighbors_i]

Création des listes avec les 2 1eres caracteristiques de chaque classe (0,1,2):
for i in range(len(Ytrain)): # recupération de chaque iris

liris = Xtrain[i]
classe = Ytrain[i]

if classe == 0 :
for j in range (4) :

X_setosa[j].append(liris[j])
elif classe ==1:
for j in range (4) :

X_versicolor[j].append(liris[j])
else :
for j in range (4) :

X_virginica[j].append(liris[j])

Tracé des graphiques:
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,7))
fig.suptitle('Espèces d iris')

ax1.set_xlabel('Longueur de sepale') # titre de l'axe des abscisses
ax1.set_ylabel('Largeur de sepale') # titre de l'axe des ordonnées
ax1.scatter(X_setosa[0],X_setosa[1], color='g', label='setosa')
ax1.scatter(X_versicolor[0],X_versicolor[1], color='r', label='versicolor')
ax1.scatter(X_virginica[0],X_virginica[1], color='b', label='Virginica')

for i in range(len(neighbors)):
couleur = coul[Ytrain[neighbors_i[i]]]
ax1.scatter(neighbors[i, 0], neighbors[i, 1], s=120, color=couleur, marker='X')

ax1.scatter(x[0],x[1], s=200,color=coul[classe_x])
ax1.legend()

ax2.set_xlabel('Longueur de petale') # titre de l'axe des abscisses
ax2.set_ylabel('Largeur de petale') # titre de l'axe des ordonnées

ax2.scatter(X_setosa[2],X_setosa[3], color='g', label='setosa')
ax2.scatter(X_versicolor[2],X_versicolor[3], color='r', label='versicolor')
ax2.scatter(X_virginica[2],X_virginica[3], color='b', label='Virginica')

for i in range(len(neighbors)):
couleur = coul[Ytrain[neighbors_i[i]]]
ax2.scatter(neighbors[i, 2], neighbors[i, 3],s=120, color=couleur, marker='X')

ax2.scatter(x[2],x[3], s=200,color=coul[classe_x])
ax2.legend()

ax2.legend()
plt.show()

affichePrediction(x, k, Xtrain , Ytrain)

predict(i, k, d)

Entrée[]: def predict(Xtest, Xtrain, i, k, d): # renvoie la classe prédite pour Xtest[i]
return knn(Xtest[i], Xtrain, Ytrain, k, d)

Entrée[]: print("Classe prédite pour X_test[0] :", predict(0, 3, d2))
print("Classe réelle pour X_test[0] :", Ytest[0])

affichePrediction(x, classe_x , Xtrain , Ytrain) x k x

Classe prédite pour X_test[0] : 0
Classe réelle pour X_test[0] : 0

Entrée[]: def affichePrediction(x, k , Xtrain , Ytrain):

X_setosa = [[],[],[],[]]
X_versicolor= [[],[],[],[]]
X_virginica= [[],[],[],[]]

classe_x = knn(x, Xtrain, Ytrain , k, d)

coul = ['g','r','b']
neighbors_i = voisins(x, Xtrain, 7, d2)
neighbors = Xtrain[neighbors_i]

Création des listes avec les 2 1eres caracteristiques de chaque classe (0,1,2):
for i in range(len(Ytrain)): # recupération de chaque iris

liris = Xtrain[i]
classe = Ytrain[i]

if classe == 0 :
for j in range (4) :

X_setosa[j].append(liris[j])
elif classe ==1:
for j in range (4) :

X_versicolor[j].append(liris[j])
else :
for j in range (4) :

X_virginica[j].append(liris[j])

Tracé des graphiques:
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(20,7))
fig.suptitle('Espèces d iris')

ax1.set_xlabel('Longueur de sepale') # titre de l'axe des abscisses
ax1.set_ylabel('Largeur de sepale') # titre de l'axe des ordonnées
ax1.scatter(X_setosa[0],X_setosa[1], color='g', label='setosa')
ax1.scatter(X_versicolor[0],X_versicolor[1], color='r', label='versicolor')
ax1.scatter(X_virginica[0],X_virginica[1], color='b', label='Virginica')

for i in range(len(neighbors)):
couleur = coul[Ytrain[neighbors_i[i]]]
ax1.scatter(neighbors[i, 0], neighbors[i, 1], s=120, color=couleur, marker='X')

ax1.scatter(x[0],x[1], s=200,color=coul[classe_x])
ax1.legend()

ax2.set_xlabel('Longueur de petale') # titre de l'axe des abscisses
ax2.set_ylabel('Largeur de petale') # titre de l'axe des ordonnées

ax2.scatter(X_setosa[2],X_setosa[3], color='g', label='setosa')
ax2.scatter(X_versicolor[2],X_versicolor[3], color='r', label='versicolor')
ax2.scatter(X_virginica[2],X_virginica[3], color='b', label='Virginica')

for i in range(len(neighbors)):
couleur = coul[Ytrain[neighbors_i[i]]]
ax2.scatter(neighbors[i, 2], neighbors[i, 3],s=120, color=couleur, marker='X')

ax2.scatter(x[2],x[3], s=200,color=coul[classe_x])
ax2.legend()

ax2.legend()
#plt.show()

affichePrediction(x, k, Xtrain , Ytrain)

precision(Xtest, Ytest, Xtrain, Ytrain, k, dist)

Entrée[22]: def precision(Xtest, Ytest, Xtrain, Ytrain, k, dist):

print (Xtest, Ytest)
n = len(Xtest)
p = 0
for i in range(n):

x = Xtest[i]
classe_avec_knn= knn(x, Xtrain, Ytrain, k, dist)
print(classe)
if classe_avec_knn == Ytest[i]: # la classe obtenue correspond‐elle a la classe predite?

p += 1
else:
print(f"Erreur pour X_test[{i}] : {iris.target_names[predict(i, k)]} au lieu de {iris.target_names[Y_test[i]]}")

return p/n

Entrée[23]:
i i (Xt t Yt t Xt i Yt i k d)

Entrée[24]: def plot_precision(kmax, Xtest, Ytest, Xtrain, Ytrain, d):
plt.figure()
plt.plot(range(1, kmax), [precision(Xtest, Ytest, Xtrain, Ytrain,k, d) for k in range(1, kmax)])
plt.xlabel("k")
plt.ylabel("Précision")
plt.show()

plot_precision(50, Xtest, Ytest, Xtrain, Ytrain, d2)

Entrée[]: plot_precision(15, Xtest, Ytest, Xtrain, Ytrain, d2)

Entrée[25]: precision(Xtest, Ytest, Xtrain, Ytrain, k, d2)

Sortie[23]: 0.9666666666666667

Sortie[25]: 0.9666666666666667

Entrée[26]: k=9
M = np.zeros((3, 3), dtype=int)
for i in range(len(Xtest)):
x = Xtest[i]
cl = knn(x, Xtrain, Ytrain, k, d)
M[cl][Ytest[i]] += 1

print(M)

Entrée[]:

distManhattan

Entrée[27]: def distManhattan(x, y):
return sum(abs(x[i] ‐ y[i]) for i in range(len(x)))

distManhattan

[[10 0 0]
 [0 10 1]
 [0 0 9]]

Entrée[28]: precision(Xtest, Ytest, Xtrain, Ytrain, k, distManhattan)# on obtient la même précision qu'avec la distance euclidienne

distTchebychev
distTchebychev

Entrée[1]: def distThebychev(x, y):
return max(abs(x[i] ‐y[i]) for i in range(len(x)))

Entrée[31]: precision(Xtest, Ytest, Xtrain, Ytrain, k, distThebychev)

Sortie[28]: 0.9666666666666667

Sortie[31]: 1.0

