Entrée[2]:

Exercice guidé sur la classification d'iris - Apprentissage automatique
supervise

Nous allons travailler sur le jeu de données des iris de Fischer, utilisé trés couramment comme base de travail pour découvrir I'apprentissage
automatique supervisé et non supervisé.

Pour en savoir plus sur ce jeu de données : https://fr.wikipedia.org/wiki/lris_de_Fisher (https://fr.wikipedia.org/wiki/lris_de_Fisher)

Dans cet exercice guidé, nous allons chercher a déterminer a quelle variété un iris donné appartient, en fonction de ses caractéristiques, en utilisant

I'algorithme des k plus proches voisins.
Chaque iris est caractérisé par 4 données : les longueurs, et largeurs de la sépale et de la pétale.

iris setosa iris versicolor

petal sepal petal sepal petal sepal

Nous allons utiliser Scikit-learn qui est une bibliotheque libre Python destinée a I'apprentissage automatique et qui comportent, entre autres des jeux de
données dont celui des iris de Fischer.

Le script suivant charge les données :

M from sklearn.datasets import load_iris
import numpy as np
iris = load iris()

Description des données

iris obtenu dans le script précédent est un dictionnaire tel que :

e iris['data'] estune matrice numpy dontchaque ligne contient les caractéristiques d'un iris : longueur, largeur de la sépale et de la pétale.

-np..dhﬁgihror-m. npu.mu;ﬁ[:n.u-pnm l-;'ngm [:m|-.im-.|.l mmh[:mp.
5.1 1k 14 oz
[P 10 [14 :l:u"
a7 az [12 o2
[a8 11 [1s [0z

50 a6 14 o2

e iris['target'] estun vecteur contenant les variétés d'iris : setosa (0), versicolor (1) ou virginica (2).

target
o
0

=

L=

L'objectif est donc, a partir des caractéristiques d'un iris, de déterminer sa variété.

Remarque : pour accéder a une clé k dans un dictionnaire d, on peut écrire d.k plutétque d['k'] .
On utiliseradonc iris.data et iris.target dans la suite.

Prise en main du jeu de données

Affichage des dimensions de la matrice qui contient les caractéristiques des iris du jeu de données iris.
Pour le nombre de lignes (qui correspond au nombre d'iris) : 150
Pour le nombre de colonnes (qui correspond au nombre de caractéristiques) :4

Pour la manipulation de tableaux numpy_.array, vous pouvez, entre autres, consulter le site:

Entrée[3]: M np.shape(iris.data)
1l y a 150 1iris, chacun ayant 4 caractéristiques

Sortie[3]: (150, 4)

Affichage des caractéristiques du 1er iris du jeu de données:

Entrée[4]: M iris.data[@]
pour obtenir les caracteristiques du ler 1iris

Sortie[4]: array([5.1, 3.5, 1.4, 0.2])

« Affichage de I'étiquette (ou label ou classe) du 1eriris :

Entrée[5]: M iris.target[Q]
L'étiquette du ler 1iris : @ donc setosa

Sortie[5]: ©

Le premier iris du jeu de données a donc:

e une longueur de sépale de 5.1 cm,
e une largeur de sépale de 3.5 cm,

e une longueur de pétale de 1.4 cm
e etune largeur de pétale de 0.2 cm.

[l est de la variété setosa.

Tracé de graphiques

Les données sont donc des points de R*. Pour les visualiser, on peut regarder leurs projections en tracant d'abord les 2 premiers axes (longueur et
largeur de la sépale),

Espéces d s

- & eeucslor
d - L] & WA
5 : " . bl
15 * O] *
- § - & e 8 L 11 -
: - e - L]
Poofep THe o gy o Bl
5 - :l: .lini L L
- LR L -
L] e L L]
L .l : > 'i
et sur les deux autres axes (longueur et largeur de la pétale) :
Espbioes o ires
- & " = = & w8
- - .

-
N
-

%

Fi)

aE S8
- EEEEE
L L LY]
L -
L3 L]
LR) L 3

L
-
L
-

55 6 5

Longuew de wepale

13

Largewr e priale

Lo

0%

o

Entrée[6]: M import matplotlib.pyplot as plt

X1_setosa =[]
X2_setosa = []

X1_versicolor= []
X2_versicolor= []
X1_virginica
X2_virginica

n n
—r—
—

Création des listes avec les 2 leres caracteristiques de chaque classe (0,1,2):
for i in range(len(iris.target)): # recupération de chaque iris

liris = iris.data[i]

classe = iris.target[i]

if classe ==
X1 setosa.append(liris[0])
X2 _setosa.append(liris[1])
elif classe ==1:
X1_versicolor.append(liris[@])
X2_versicolor.append(liris[1])
else :
X1 _virginica.append(liris[0])
X2 _virginica.append(liris[1])

Tracé du graphique:

plt.title('Espéces d iris')

plt.xlabel('Longueur de sepale') # titre de L'axe des abscisses
plt.ylabel('Largeur de sepale') # titre de L'axe des ordonnées
""" #version avec plot

plt.plot (X1l _setosa,X2 setosa, marker='o', color='g', markersize=3, linestyle='"', label="Setosa")

plt.plot(X1 versicolor,X2 versicolor, marker='o', color='r', markersize=3, linestyle='"', label="Versicolor")
plt.plot(X1_virginica,X2_virginica, marker='o', color='b', markersize=3, linestyle='"', label="Virginica")
plt.legend()

plt.show()

#version avec scatter

plt.scatter(Xl_setosa,X2_setosa, color='g', label='setosa')

plt.scatter(X1l_versicolor,X2 versicolor, color='r', label='versicolor')
plt.scatter(Xl_virginica,X2_virginica, color='b', label='Virginica')

plt.legend()

plt.show()

Afficher les

Entrée[1]:

M X_setosa = [[I,[1,[1],[]]

X_versicolor= [[],[1],[1,[] 1]
X_virginica= [[],[1,[],[]]

Création des listes avec les 2 leres caracteristiques de chaque classe (0,1,2):
for i in range(len(iris.target)): # recupération de chaque iris

liris = iris.data[i]

classe = iris.target[i]

if classe ==
for j in range (4) :
X_setosa[j].append(liris[j])
elif classe ==1:
for j in range (4) :
X_versicolor[j].append(liris[j])
else :
for j in range (4) :
X_virginica[j].append(liris[j])

Tracé des graphiques:
fig, (ax1, ax2) = plt.subplots(1l, 2, figsize=(20,7))
fig.suptitle('Espéces d iris')

axl.set xlabel('Longueur de sepale') # titre de L'axe des abscisses
axl.set_ylabel('Largeur de sepale') # titre de L'axe des ordonnées
axl.plot(X_setosa[@],X_setosa[l], marker='o', color='g', markersize=3, linestyle="'"', label="Setosa")
axl.plot(X_versicolor[@],X _versicolor[1l], marker='o', color='r', markersize=3, linestyle=""
axl.plot(X_virginica[@],X virginica[1], marker='o', color='b', markersize=3, linestyle=""

, label="Virginica")

axl.scatter(X setosa[@],X setosa[l], color='g', label='setosa')
axl.scatter(X versicolor[0],X versicolor[1l], color='r', label='versicolor')
axl.scatter(X_virginica[@],X_virginica[1l], color='b"', label='Virginica')

axl.legend()

ax2.set_xlabel('Longueur de petale') # titre de L'axe des abscisses
ax2.set_ylabel('Largeur de petale') # titre de L'axe des ordonnées
ax2.scatter(X setosa[2],X setosa[3], color='g', label='setosa')
ax2.scatter(X versicolor[2],X versicolor[3], color='r', label='versicolor')
ax2.scatter(X_virginica[2],X_virginica[3], color='b', label='Virginica')
ax2.plot(X_setosa[2],X_setosa[3], marker='o', color='g', markersize=3, linestyle=""', label="Setosa")
ax2.plot(X_versicolor[2],X_versicolor[3], marker='o', color='r', markersize=3, linestyle=""
ax2.plot(X_virginica[2],X virginica[3], marker='o', color='b', markersize=3, linestyle=""

, label="Virginica")

, label="Versicolor")

, label="Versicolor")

ax2.legend()
plt.plot()

Traceback (most recent call last):
File "<input>", line 6, in <module>
NameError: name 'iris' is not defined

Classification

Un algorithme de classification demande de séparer les données que I'on souhaite en 2 ensembles :

* les données d'entrainement (X_train dans la suite) que I'on utilise pour améliorer le modéle
¢ les données de test (X_test) pour juger des performances du modele.

Séparation données d'entrainement / test

Créer une fonction separer(X, Y, p) quipermet de séparer I'ensemble des iris du jeu de données en 2, suivant la proportion p. La fonction va
générer et rerouner 4 tableaux

e X_train quicontient les caractéristiques de chaque iris des données d'entrainement.
e Y_train contient la classe de chacun des iris (0 = setosa, 1 = versicolor, 2 = virginica).
e De méme pour X_test et Y_test.

Remarque : Si ce n'est pas le cas, pensez a convertir les données générées en numpy_.array_ pour pouvoir les manipuler plus facilement notamment
pour les tracés a venir.

Tester la fonction pour qu'elle répartisse le jeu de données suivant une répartition 80% pour les données d'entrainement et 20% pour les données de
test.

Entrée[6]: M def separer(X, Y, p):
Xtrain, Xtest, Ytrain, Ytest =[], []1, [1, []
for i in range(len(X)):
if i <= p * len(X) :
Xtrain.append(X[i])
Ytrain.append(Y[i])
else:
Xtest.append(X[i])
Ytest.append(Y[i])
return np.array(Xtrain), np.array(Xtest), np.array(Ytrain), np.array(Ytest)

Xtrain, Xtest, Ytrain, Ytest = separer(iris.data, iris.target, .8) # cette séparation n'est pas deale avec notre jeu de donnée:

2e version + adaptée au jeu de données 1iris:
on met p*10 (p correspondant au %) 1iris sur 10 dans Xtrain , Ytrain, et 1/5 dans Xtest, Ytest dans L'ordre ou 1ils sont stock
def separer2(X, Y, p):
nb = p*10
cptr = O
Xtrain, Xtest, Ytrain, Ytest = [], [], [], []
for i in range(len(X)):
if cptr <nb
#if i%nb =0 : #
Xtrain.append(X[i])
Ytrain.append(Y[i])
cptr +=1
else:
Xtest.append(X[i])
Ytest.append(Y[i])
cptr +=1
if cptr == 10 :
cptr = O

return np.array(Xtrain), np.array(Xtest), np.array(Ytrain), np.array(Ytest)

Xtrain, Xtest, Ytrain, Ytest
Xtrain, Xtest, Ytrain, Ytest

separer(iris.data, iris.target, .8)
separer2(iris.data, iris.target, .8)

Afficher les caractéristiques (longueur, largeur de sépale et de pétale) de la premiere fleur des données d'entrainement, ainsi que sa variété :

Entrée[7]: M print(Xtrain[@]) # caractéristiques
print(Ytrain[@]) # variéetée

[5.1 3.5 1.4 0.2]
0

4. Mise en ceuvre de l'algorithme des k plus proches voisins

Calcul de distances : distance euclidienne

Soient x = (xq, X1, X2, x3) ety = (yo, Y1, Y2, ¥3) deux caractéristiques de fleurs (longueur et largeur de la sépale et de la pétale). On définit la distance
euclidienne d entre ces fleurs par :

dx,) = 3/ (x0 = 3o + (x1 = 1) + (k2 = 2P + (x3 = 33

o Définir la fonction d(x, y) qui prend en parameétres 2 vecteurs(tableaux) x ety et retourne la valeur de la distance euclidienne entre x et y.

Entrée[14]: M def d(x, y):
return ((x[@] - y[@])**2 + (X[1] - y[1])**2 + (x[2] - y[2])**2 + (X[3] - y[3])**2)**@.5

def d(x, vy) : # calcul de distances pour des tailles de vecteurs quelconques
s=0
for i in range (0, len(x)):
s = s + (x[1] - y[i])**2
return s**0.5

Remarque : on peut aussi utiliser le fait que la distance euclidienne entre deux vecteurs X et Y est \/(X —Y)T(X = Y), ce qui est plus rapide &
calculer. De plus, on ne s'intéresse qu'aux plus proches voisins, et pas a leur distance exacte. On peut donc se passer du calcul de la racine carrée,

e Définir la fonction d2(x, y) qui calcule la distance euclidienne suivant cette formule.
Entrée[15]: M def d2(x, y):

z=x-Y
return z.T.dot(z)

o Définir la fonction voisins(x, X, k, dist) quirenvoie la liste des indices des k plus proches voisins de x dans X en utilisant la fonction dist de
calcul de distance:

Entrée[16]:

M def voisins(x, X, k, dist):

listeDistancelIndices=[] # liste de listes[distance, indice]
for i in range (len(X)) :
distance = dist(x, X[i])
listeDistancelIndices.append([distance, i])
listeDistancelIndices.sort()
lesVoisins = [] # Lliste qui ne contiendra que les indices
for i in range(k):
lesVoisins.append(listeDistanceIndices[i][1])
return lesVoisins

Xtest[0]
voisins(x, Xtrain, k, d)

< X =~

variante en utilisant Lla fonction sorted

def voisins(x, X, k, dist): # renvoie les k plus proches voisins de x dans X
indices = sorted(range(len(X)), key=lambda i: dist(x, X[i]))
return indices[:k]

X
1]

Xtest[0O]
voisins(x, Xtrain, k, d)

<
1]

e Fonction majoritaire(L) quidétermine et renvoie la classe majoritaire de la liste L, passée en parametre.

Entrée[17]: M def majoritaire(L):
compte = {} # compte[e] = nombre d'occurrences de e dans L
for e in L:
if e in compte:
compte[e] += 1
else:
compte[e] = 1
kmax = L[0]
for k in compte:
if compte[k] > compte[kmax]:
kmax = k
return kmax
test de lLa fonction en affichant La classe majoritaire du jeu de données
print(majoritaire(iris.target))

version 2 en utilisant Lla fonction get des dictionnaires
def majoritaire(L): # renvoie la classe qui apparait le plus souvent dans L
compte = {}
for e in L:
compte[e] = compte.get(e, ©0) + 1
return max(compte, key=compte.get)

» Al'aide des fonctions précédentes, écrire la fonction knn(x, X, Y, k, dist) quiretourne la classe prédite pour x par l'algorithme des k plus
proches voisins.

Entrée[18]: M def knn(x, X, Y, k, dist): # renvoie la classe prédite pour x par L'algorithme des k plus proches voisins
détermination des 1indices des k plus proches voisins
lesVoisins = voisins(x, X, k, dist)

détermination des classes des k plus proches voisins
lesClasses = [Y[i] for i in lesVoisins]

determination de la classe majoritaire des k voisins obtenues qui sera la classe de x
laClasseMajoritaire = majoritaire(lesClasses)
return laClasseMajoritaire

Ecrire la fonction affichePrediction(x, classe_x , Xtrain , Ytrain) quiaffiche x etles k plus proches voisins de x ainsi que la classe
prédite

Entrée[21]: M def affichePrediction(x, k , Xtrain , Ytrain):

X_setosa = [[],[1,[],[]]
X_versicolor= [[1,[1,[],[]]

X_virginica= [[1,[1,[1,[]]
classe x = knn(x, Xtrain, Ytrain , k, d)

cou1= [Igl,lr‘l,lbl]
neighbors_i = voisins(x, Xtrain, 7, d2)
neighbors = Xtrain[neighbors_i]

Création des lListes avec les 2 leres caracteristiques de chaque classe (0,1,2):
for i in range(len(Ytrain)): # recupération de chaque 1iris

liris = Xtrain[i]

classe = Ytrain[i]

if classe == 0 :
for j in range (4) :
X_setosa[j].append(liris[j])
elif classe ==1:
for j in range (4) :
X_versicolor[j].append(liris[j])
else :
for j in range (4) :
X_virginica[j].append(liris[j])

Tracé des graphiques:
fig, (ax1, ax2) = plt.subplots(l, 2, figsize=(20,7))
fig.suptitle('Espéces d iris')

axl.set xlabel('Longueur de sepale') # titre de L'axe des abscisses
axl.set_ylabel('Largeur de sepale') # titre de L'axe des ordonnées
axl.scatter(X_setosa[@],X_setosa[l], color="g', label='setosa')
axl.scatter(X_versicolor[@],X_versicolor[1], color='r', label='versicolor')
axl.scatter(X_virginica[@],X_virginica[1l], color='b', label='Virginica')

for i in range(len(neighbors)):
couleur = coul[Ytrain[neighbors_i[i]]]
axl.scatter(neighbors[i, @], neighbors[i, 1], s=120, color=couleur, marker='X")

axl.scatter(x[0],x[1], s=200,color=coul[classe x])
ax1l.legend()

ax2.set_xlabel('Longueur de petale') # titre de L'axe des abscisses
ax2.set _ylabel('Largeur de petale') # titre de L'axe des ordonnées

ax2.scatter(X setosa[2],X setosa[3], color='g', label='setosa')
ax2.scatter(X versicolor[2],X versicolor[3], color='r', label='versicolor')
ax2.scatter(X_virginica[2],X_virginica[3], color='b', label='Virginica')

for i in range(len(neighbors)):
couleur = coul[Ytrain[neighbors_i[i]]]

ax2.scatter(neighbors[i, 2], neighbors[i, 3],s=120, color=couleur, marker='X")

ax2.scatter(x[2],x[3], s=200,color=coul[classe x])
ax2.legend()

ax2.legend()
plt.show()

affichePrediction(x, k, Xtrain , Ytrain)
Fonction predict(i, k, d) quirenvoie la classe prédite pour le iéme iris du jeu de donnée X_test

Entrée[]: M def predict(Xtest, Xtrain, i, k, d): # renvoie la classe prédite pour Xtest[i]
return knn(Xtest[i], Xtrain, Ytrain, k, d)

Entrée[]: M print("Classe prédite pour X_test[0] :", predict(@, 3, d2))
print("Classe réelle pour X_test[@] :", Ytest[0])
Classe prédite pour X _test[0] : ©
Classe réelle pour X test[O] : ©

Ecrire la fonction affichePrediction(x, classe_x , Xtrain , Ytrain) quiaffiche x etles k plus proches voisins de x ainsi que la classe
prédite :

Entrée[]: M def affichePrediction(x, k , Xtrain , Ytrain):

X_setosa = [[],[1,[],[]]
X_versicolor= [[1,[1,[],[]]

X_virginica= [[1,[1,[1,[]]
classe x = knn(x, Xtrain, Ytrain , k, d)

cou1= [Igl,lr‘l,lbl]
neighbors_i = voisins(x, Xtrain, 7, d2)
neighbors = Xtrain[neighbors_i]

Création des listes avec les 2 leres caracteristiques de chaque classe (0,1,2):
for i in range(len(Ytrain)): # recupération de chaque 1iris

liris = Xtrain[i]

classe = Ytrain[i]

if classe == 0 :
for j in range (4) :
X_setosa[j].append(liris[j])
elif classe ==1:
for j in range (4) :
X_versicolor[j].append(liris[j])
else :
for j in range (4) :
X_virginica[j].append(liris[j])

Tracé des graphiques:
fig, (ax1, ax2) = plt.subplots(l, 2, figsize=(20,7))
fig.suptitle('Espéces d iris')

axl.set xlabel('Longueur de sepale') # titre de L'axe des abscisses
axl.set_ylabel('Largeur de sepale') # titre de L'axe des ordonnées
axl.scatter(X_setosa[@],X_setosa[l], color="g', label='setosa')
axl.scatter(X_versicolor[@],X_versicolor[1], color='r', label='versicolor')
axl.scatter(X_virginica[@],X_virginica[1l], color='b', label='Virginica')

for i in range(len(neighbors)):
couleur = coul[Ytrain[neighbors_i[i]]]
axl.scatter(neighbors[i, @], neighbors[i, 1], s=120, color=couleur, marker='X")

axl.scatter(x[0],x[1], s=200,color=coul[classe x])
ax1l.legend()

ax2.set_xlabel('Longueur de petale') # titre de L'axe des abscisses
ax2.set _ylabel('Largeur de petale') # titre de L'axe des ordonnées

ax2.scatter(X setosa[2],X setosa[3], color='g', label='setosa')
color="r', label='versicolor')
ax2.scatter(X_virginica[2],X_virginica[3], color='b', label='Virginica')

ax2.scatter(X versicolor[2],X versicolor[3],

for i in range(len(neighbors)):
couleur = coul[Ytrain[neighbors_i[i]]]

ax2.scatter(neighbors[i, 2], neighbors[i, 3],s=120,

color=couleur,

ax2.scatter(x[2],x[3], s=200,color=coul[classe x])

ax2.legend()

ax2.legend()
#plt.show()

affichePrediction(x, k, Xtrain , Ytrain)

Espeéces d iris

marker="X")

45 4
° @ =tosa 254 ® setosa o
@ versicolor ® versicolor ™ ™
™ e \Virginica e \VMirginica 00 °
o B
40 @ o
® 20 1 seoe
® e o e o
° B ow ae
L] L W L] L]
w 35 o0 e L w e e L]
2 e 8 @ @ £ L 8154 e see B @
b ° @ ® a ® eee ®
3 % 2% ® @ o0 eee o 1 L] e eoee
5 ® oo . e o 3 es o0 o
2 30 ”® Koo e oo o o se0e ® e g2 B
3 & e esee . 3 10 se e oo
eoe secee @ ® .
e o o oo
° @ @
25 L] L] L] .
@ El 05 - °
° B S . ® see o
@ =i
o ftee o
20 4 o % W
T T T T T T T T 00‘ T T T T T
45 50 55 6.0 6.5 10 75 80 1 2 3 4 5

Longueur de sepale

Evaluation du modeéle

Longueur de petale

Ecrire la fonction precision(Xtest, Ytest, Xtrain, Ytrain, k, dist) qui calcule la précision cad le nombre de prédictions correctes sur le
nombre de prédictions totales

Entrée[22]: M def precision(Xtest, Ytest, Xtrain, Ytrain, k, dist):

print (Xtest, Ytest)
n = len(Xtest)

p=29
for i in range(n):
x = Xtest[i]

classe_avec_knn= knn(x, Xtrain, Ytrain, k, dist)
print(classe)

if classe_avec_knn == Ytest[i]: # la classe obtenue correspond-elle a La classe predite?
p +=1
else:
print(f"Erreur pour X test[{i}] : {iris.target _names[predict(i, kR)]} au Llieu de {iris.target names[Y test[i]]}")
return p/n

Entrée[23]: M

Sortie[23]: 0.9666666666666667
Pour savoir quelle est la meilleure valeur de k, afficher la précision en fonction de k :

Entrée[24]: M def plot_precision(kmax, Xtest, Ytest, Xtrain, Ytrain, d):
plt.figure()
plt.plot(range(1, kmax), [precision(Xtest, Ytest, Xtrain, Ytrain,k, d) for k in range(1, kmax)])

plt.xlabel("k")
plt.ylabel("Précision")
plt.show()
plot_precision(50, Xtest, Ytest, Xtrain, Ytrain, d2)

Zoomonssur k € [1,15]:
Entrée[]: M plot precision(15, Xtest, Ytest, Xtrain, Ytrain, d2)
Graphiquement, la précision est maximale pour k = 9:

Entrée[25]: M precision(Xtest, Ytest, Xtrain, Ytrain, k, d2)

Sortie[25]: ©.9666666666666667

Creer et afficher la matrice de confusion pour k = 9 :

Entrée[26]: M k=9
M = np.zeros((3, 3), dtype=int)
for i in range(len(Xtest)):
x = Xtest[i]
cl = knn(x, Xtrain, Ytrain, k, d)
M[cl][Ytest[i]] += 1
print(M)

[[106 @ 0]
[010 1]
[@ @ 9]]

Entrée[]: M

Autres distances

Essais d'autres distances pour comparer la précision :

x,l)

Distance de Manhattan

Créer la fonction distManhattan qui calcule la distance de Manhattan pour les vecteurs x et y.

Entrée[27]: M def distManhattan(x, y):
return sum(abs(x[i] - y[i]) for i in range(len(x)))

Calculer la précision en utilisant distManhattan .

Entrée[28]: M precision(Xtest, Ytest, Xtrain, Ytrain, k, distManhattan)# on obtient La méme précision qu'avec la distance euclidienne

Sortie[28]: 0.9666666666666667

Distance de Thebychev

Créer la fonction distTchebychev qui calcule la distance de Tchebytchev pour les vecteurs x et y.
Calculer la précision en utilisant distTchebychev .

Entrée[1]: M def distThebychev(x, y):
return max(abs(x[i] -y[i]) for i in range(len(x)))

Entrée[31]: M precision(Xtest, Ytest, Xtrain, Ytrain, k, distThebychev)

Sortie[31]: 1.0

Conclusion : I'utilisation d'autres distances n'a pas permis d'améliorer la précision.

