Exercice guidé sur la classification d'iris - Apprentissage automatique non supervisé

Algorithme des k moyennes (k-means)

Pour mettre en place une classification a l'aide de l'algorithme des k-moyennes. Nous allons repartir du jeu de données des iris de Fischer. Mais cette
fois-ci nous ne tiendrons pas compte de la classe définie dans la liste target...puisque nous cherchons a la définir.

iris setosa iris versicolor iris virginica

petal sepal petal sepal petal sepal

Dans cet exercice, nous ne travaillerons que sur les 2 1éres caractéristiques (sur les 4).

sepal length (cm) | sepal width (cm) | etal length (cm) | petal width (cm)
51 3.5 |.4 0.2
49 3.0 |.4 0.2
4.7 az 1.3 0.2
4.6 a1 1.5 0.2
5.0 3.6 |.4 0.2

Le script suivant permet de tracer un nuage de points et de déterminer 3 centres initiaux aléatoires :

45 ¢

454 &

Analyser le code fourni puis définir et tester les fonctions suivantes :

Entrée[20]: M

Sortie[20]:

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap
from sklearn.datasets import load_iris
import random

#Chargement du jeu de données

iris = load iris()

X= iris.data

10 X = X[: , :2] # extraction des 2 leres colonnes de La matrice des iris => uniquement les 2 leres caracteristiques

OWoOoNOOUVTEA, WNER

12 # détermination aléatoire des centres parmi L'ensemble des données fournies
13 k= 3

14 1lesCentres = []

15 for i in range(k):

16 ind = random.randint(@,len(X)-1)
17 lesCentres.append(X[ind].tolist())
18

19

20 # affichage de la situation initiale

21 plt.scatter([x[@] for x in X], [x[1] for x in X]) # affichage des points pour Lles iris

22 plt.scatter([x[@] for x in lesCentres], [x[1] for x in lesCentres], marker='x', s=100, c='g') #affichage des centres x ver
23 plt.title("k-means iris de Fischer™)

24 plt.show()

25 #plt.closeAlLl()

26

27 """ Code a utiliser lorsque la fonction kmeans sera codée pour la tester
28 plt.close('all')

29 classes = kmeans(X, k, lesCentres) # test de kmeans

30 cmap = ListedColormap(['g', 'r', 'b', 'purple'])
31 centres = calculer_centres(classes, k)

33 plt.scatter([x[@] for x in X], [x[1] for x in X], c=[plus_proche(x, centres) for x in X], cmap=cmap)
34 plt.scatter([x[@] for x in centres], [x[1] for x in centres], marker='x"', s=100, c=range(k), cmap=cmap)

35 plt.title("Inertie = " + str(inertie(classes, centres,k)))
36 plt.show()
37 mmn

" Code a utiliser lorsque la fonction kmeans sera codée pour la tester\nplt.close(\'all\')\nclasses = kmeans(X, k, lesCentre
s) # test de kmeans\ncmap = ListedColormap([\'g\', \'r\', \'b\', \'purple\'])\ncentres = calculer_centres(classes, k)\n\
nplt.scatter([x[@] for x in X], [x[1] for x in X], c=[plus_proche(x, centres) for x in X], cmap=cmap)\nplt.scatter([x[0] for

x in centres], [x[1] for x in centres], marker=\'x\', s=100, c=range(k), cmap=cmap)\nplt.title("Inertie = " + str(inertie(cl
asses, centres,k)))\nplt.show()\n'

1- Définir la fonction fonction dist(x, y) renvoyant la distance euclidienne de 2 vecteurs x, y passés en parametres.

Entrée[21]: M def dist(x, y):
"t odist(x : list, y : list)-> float
entrees : x, y, 2 listes (vecteurs) de flottants dont on veut calculer la distance euclidienne

sortie : s, flottant, la distance entre les vecteur x et y

1

2

3

4

5 W
6 d = o.

7 for i in range(len(x)):
8 d+= (x[i] - y[i])**2
9 return d**.5

2- Ecrire une fonction plus_proche(x, lesCentres) renvoyantle numéro i(indice)de la classe la plus proche de x parmi lesCentres, c'est-3-dire la
classe telle que la distance de x a lesCentres[i] soit minimale.
Cette fonction fait appel a la fonction dist .

Entrée[22]: M 1 #Q2
2 def plus_proche(x , lesCentres):
3 """ plus_proche(x : list , lesCentres : list)-> int

4 entrees : x, liste, vecteur dont on veut connaitre le centre le plus proche
5 : lesCentres, liste des centres

6 sortie : imin, entier, indice du centre le plus proche

7 Wi

8 imin = ©

9 for i in range(len(lesCentres)):

10 if dist(x, lesCentres[i]) < dist(x, lesCentres[imin]):

11 imin = 1

12 return imin

3- Ecrire une fonction calculer_classes(X , lesCentres , k) renvoyant une liste de classes telle que classes[i] soit la liste des données de X
dont le centre le plus proche est lesCentres]i].
Cette fonction fait appel a la fonction plus_proche .

Entrée[23]: M 1 #Q3

2 def calculer classes(X, lesCentres, k):

3 """ calculer_classes(X:list, centres:list , k:int)->list

4 entrees : X, liste, liste des entrées

5 : lesCentres, liste des centres

6 k, entier, nombre de classes

7 sortie : classes, liste de listes des points de chaque classe

8 win

9 classes = [[] for i in range(k)]

10 for x in X:

11 indPlusProche = plus_proche(x, lesCentres) # 1indice du centre Le plus proche

12 classes[indPlusProche].append(x) # ajout de x a la classe possedant cet indice

13 return classes

4- Le centre (ou isobarycentre ou centroide) d'un ensemble de vecteurs x1, .. ., xn est défini par le vecteur :

__ 1 .
X= =)i xi

I

Ecrire une fonction centre(X) renvoyant le centre de la liste de vecteurs X, passée en paramétre

Entrée[24]: M 1 #Q4
2 def centre(X):
3 "' ocentre(X)

4 determination du barycentre d'un ensemble X de vecteurs
5 entree : X, liste, liste des donnees

6 sortie : ¢, liste(vecteur) du barycentre de X

7 Wi

8 dim=0

9 if len(X) != o:
10 dim = len(X[@])
11 c = [0.]*dim
12 if len(X) == 0 :

13 return c

14 for x in X:

15 for i in range(len(x)): # pour chaque caracteristique
16 c[i] = c[i] + x[1i]

17

18 for i in range(len(c)):

19 c[i] = round(c[i] /len(X) , 3) #arrondi a 3 decimales
20 return c

21

5- Ecrire une fonction calculer_centres(classes,k) renvoyant la liste des centres de chaque classe. Cette fonction fait appel & la fonction

centre .

Entrée[25]: M 1 #Q5

2 def calculer_centres(classes, k):

3 """ calculer_centres(classes : 1lst , k : int) -> list
4 entrees : classes, liste, représentant les classes
5 k, entier, nombre de classes a générer
6 sortie : centres, liste (de listes) des centres générés
7 Wi

8 centres = []

9 for classe in classes:
10 centrei = centre(classe)
11 centres.append(centrei)
12 return centres

6- Ecrire une fonction kmeans(X, k, lesCentres) appliquant l'algorithme des k-moyennes & X en partant des centres et renvoyant la liste des classes
obtenues.
Cette fonction fait appel a calculer_classes et calculer_centres .

Entrée[1]: M 1 def affiche(X, classes,k):
2 cmap = ListedColormap(['g', 'r', 'b', 'purple'])
3 centres = calculer_centres(classes, k)
4 plt.close()
5 plt.scatter([x[@] for x in X], [x[1] for x in X], c=[plus_proche(x, centres) for x in X], cmap=cmap)
6 plt.scatter([x[@] for x in centres], [x[1] for x in centres], marker='x', s=100, c=range(k), cmap=cmap)
7 plt.title("Inertie = " + str(inertie(classes, centres,k)))
8 plt.show()
9
10 #06
11 def kmeans(X, k, lesCentres):
12 """ kmeans(X, k, lesCentres)->list
13 entrees : X, liste, liste des entrées
14 : lesCentres, liste des centres
15 : k, entier, nombre de classes
16 sortie : classes, liste des points de chaque classe apres traitement du kmeans
17 o
18 centres2 = []
19 while ((sorted(lesCentres)) != (sorted(centres2))) : #tri sur les Llistes pour pouvoir utiliser ==
20 # while not (np.array(sorted(lesCentres)==sorted(centres2)).all()):
21 centres2 = lesCentres
22 classes = calculer_classes(X, centres2, k)
23 # affiche(X,classes,R)
24 # plt.show()
25 lesCentres = calculer centres(classes, k)
26
27 return classes

7- Créer une fonction inertie(classes, centres, k) quicalcule l'inertie

Entrée[35]: M def inertie(classes, centres, k):
s = 0.
for i in range(k):
for x in classes[i]:
s += dist(x, centres[i])**2

T A WN R

Entrée[36]:

M

OWoOoNOOUVTEA, WNER

10

Test

import numpy as np

import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

from sklearn.datasets import load iris
import numpy as np

import random

#Chargement du jeu de données

iris = load_iris()

k=3
X= iris.data
X=X[:, :2] # extraction des 2 leres colonnes de La matrice des iris => uniquement les 2 leres caracteristiques

détermination aléatoire des centres
lesCentres = []
for i in range(k):
ind = random.randint(@,len(X)-1)
lesCentres.append(X[ind].tolist())

affichage

plt.scatter([x[0] for x in X], [x[1] for x in X]) # affichage des points pour les iris

plt.scatter([x[@] for x in lesCentres], [x[1] for x in lesCentres], marker='x', s=100, c='g') #affichage des centres
plt.show()

#plt.closeALL()

classes = kmeans(X, k, lesCentres) # test de kmeans

cmap = ListedColormap(['g', 'r', 'b', 'purple'])

centres = calculer centres(classes, k)

plt.close()

plt.scatter([x[0] for x in X], [x[1] for x in X], c=[plus_proche(x, centres) for x in X], cmap=cmap)
plt.scatter([x[0] for x in centres], [x[1] for x in centres], marker='x', s=100, c=range(k), cmap=cmap)
plt.title("Inertie = " + str(inertie(classes, centres,k)))

plt.show()

