

Entrée[20]: import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.datasets import load_iris
import random

#Chargement du jeu de données
iris = load_iris()
X= iris.data
X = X[: , :2] # extraction des 2 1eres colonnes de la matrice des iris => uniquement les 2 1eres caracteristiques

détermination aléatoire des centres parmi l'ensemble des données fournies
k= 3
lesCentres = []
for i in range(k):

ind = random.randint(0,len(X)‐1)
lesCentres.append(X[ind].tolist())

affichage de la situation initiale
plt.scatter([x[0] for x in X], [x[1] for x in X]) # affichage des points pour les iris
plt.scatter([x[0] for x in lesCentres], [x[1] for x in lesCentres], marker='x', s=100, c='g') #affichage des centres x ver
plt.title("k‐means iris de Fischer")
plt.show()
#plt.closeAll()

""" Code à utiliser lorsque la fonction kmeans sera codée pour la tester
plt.close('all')
classes = kmeans(X, k, lesCentres) # test de kmeans
cmap = ListedColormap(['g', 'r', 'b', 'purple'])
centres = calculer_centres(classes, k)

plt.scatter([x[0] for x in X], [x[1] for x in X], c=[plus_proche(x, centres) for x in X], cmap=cmap)
plt.scatter([x[0] for x in centres], [x[1] for x in centres], marker='x', s=100, c=range(k), cmap=cmap)
plt.title("Inertie = " + str(inertie(classes, centres,k)))
plt.show()
"""

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Sortie[20]: ' Code à utiliser lorsque la fonction kmeans sera codée pour la tester\nplt.close(\'all\')\nclasses = kmeans(X, k, lesCentre
s) # test de kmeans\ncmap = ListedColormap([\'g\', \'r\', \'b\', \'purple\'])\ncentres = calculer_centres(classes, k)\n\
nplt.scatter([x[0] for x in X], [x[1] for x in X], c=[plus_proche(x, centres) for x in X], cmap=cmap)\nplt.scatter([x[0] for
x in centres], [x[1] for x in centres], marker=\'x\', s=100, c=range(k), cmap=cmap)\nplt.title("Inertie = " + str(inertie(cl
asses, centres,k)))\nplt.show()\n'

fonction dist(x, y)

Entrée[21]: def dist(x, y):
""" dist(x : list, y : list)‐> float

 entrees : x, y, 2 listes (vecteurs) de flottants dont on veut calculer la distance euclidienne
 sortie : s, flottant, la distance entre les vecteur x et y
 """

d = 0.
for i in range(len(x)):

d+= (x[i] ‐ y[i])**2
return d**.5

1
2
3
4
5
6
7
8
9
10

plus_proche(x, lesCentres)

dist

Entrée[22]: #Q2
def plus_proche(x , lesCentres):

""" plus_proche(x : list , lesCentres : list)‐> int
 entrees : x, liste, vecteur dont on veut connaitre le centre le plus proche
 : lesCentres, liste des centres
 sortie : imin, entier, indice du centre le plus proche
 """

imin = 0
for i in range(len(lesCentres)):

if dist(x, lesCentres[i]) < dist(x, lesCentres[imin]):
imin = i

return imin

1
2
3
4
5
6
7
8
9
10
11
12
13

calculer_classes(X , lesCentres , k)

plus_proche

Entrée[23]: #Q3
def calculer_classes(X, lesCentres, k):

""" calculer_classes(X:list, centres:list , k:int)‐>list
 entrees : X, liste, liste des entrées
 : lesCentres, liste des centres
 : k, entier, nombre de classes
 sortie : classes, liste de listes des points de chaque classe
 """

classes = [[] for i in range(k)]
for x in X:

indPlusProche = plus_proche(x, lesCentres) # indice du centre le plus proche
classes[indPlusProche].append(x) # ajout de x à la classe possedant cet indice

return classes

1
2
3
4
5
6
7
8
9
10
11
12
13
14

centre(X)

Entrée[24]: #Q4
def centre(X):

""" centre(X)
 determination du barycentre d'un ensemble X de vecteurs
 entree : X, liste, liste des donnees
 sortie : c, liste(vecteur) du barycentre de X
 """

dim=0
if len(X) != 0:

dim = len(X[0])
c = [0.]*dim
if len(X) == 0 :

return c
for x in X:

for i in range(len(x)): # pour chaque caracteristique
c[i] = c[i] + x[i]

for i in range(len(c)):
c[i] = round(c[i] /len(X) , 3) #arrondi à 3 decimales

return c

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

calculer_centres(classes,k)

centre

Entrée[25]: #Q5
def calculer_centres(classes, k):

""" calculer_centres(classes : lst , k : int) ‐> list
 entrees : classes, liste, représentant les classes
 : k, entier, nombre de classes à générer
 sortie : centres, liste (de listes) des centres générés
 """

centres = []
for classe in classes:

centrei = centre(classe)
centres.append(centrei)

return centres

1
2
3
4
5
6
7
8
9
10
11
12
13

kmeans(X, k, lesCentres)

calculer_classes calculer_centres

Entrée[1]: def affiche(X, classes,k):
cmap = ListedColormap(['g', 'r', 'b', 'purple'])
centres = calculer_centres(classes, k)
plt.close()
plt.scatter([x[0] for x in X], [x[1] for x in X], c=[plus_proche(x, centres) for x in X], cmap=cmap)
plt.scatter([x[0] for x in centres], [x[1] for x in centres], marker='x', s=100, c=range(k), cmap=cmap)
plt.title("Inertie = " + str(inertie(classes, centres,k)))
plt.show()

#Q6
def kmeans(X, k, lesCentres):

""" kmeans(X, k, lesCentres)‐>list
 entrees : X, liste, liste des entrées
 : lesCentres, liste des centres
 : k, entier, nombre de classes
 sortie : classes, liste des points de chaque classe apres traitement du kmeans
 """

centres2 = []
while ((sorted(lesCentres)) != (sorted(centres2))) : #tri sur les listes pour pouvoir utiliser ==
while not (np.array(sorted(lesCentres)==sorted(centres2)).all()):

centres2 = lesCentres
classes = calculer_classes(X, centres2, k)
affiche(X,classes,k)
plt.show()
lesCentres = calculer_centres(classes, k)

return classes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

inertie(classes, centres, k)

Entrée[35]: def inertie(classes, centres, k):
s = 0.
for i in range(k):

for x in classes[i]:
s += dist(x, centres[i])**2

t

1
2
3
4
5
6

Entrée[36]:
#________________ Test _____________________________
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap

from sklearn.datasets import load_iris
import numpy as np
import random
#Chargement du jeu de données
iris = load_iris()

k= 3
X= iris.data
X = X[: , :2] # extraction des 2 1eres colonnes de la matrice des iris => uniquement les 2 1eres caracteristiques

détermination aléatoire des centres
lesCentres = []
for i in range(k):
ind = random.randint(0,len(X)‐1)
lesCentres.append(X[ind].tolist())

affichage
plt.scatter([x[0] for x in X], [x[1] for x in X]) # affichage des points pour les iris
plt.scatter([x[0] for x in lesCentres], [x[1] for x in lesCentres], marker='x', s=100, c='g') #affichage des centres
plt.show()
#plt.closeAll()

classes = kmeans(X, k, lesCentres) # test de kmeans
cmap = ListedColormap(['g', 'r', 'b', 'purple'])
centres = calculer_centres(classes, k)
plt.close()
plt.scatter([x[0] for x in X], [x[1] for x in X], c=[plus_proche(x, centres) for x in X], cmap=cmap)
plt.scatter([x[0] for x in centres], [x[1] for x in centres], marker='x', s=100, c=range(k), cmap=cmap)
plt.title("Inertie = " + str(inertie(classes, centres,k)))
plt.show()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

