Entrée[6]:

Algorithme du Min-Max appliqué au Puissance 4

Présentation

Le Puissance 4 est un jeu a 2 joueurs qui se joue dans une grille de 7 colonnes et 6 lignes.

Chaque joueur a tour de réle fait tomber dans une colonne un jeton de sa couleur (rouge pour le
joueur 1, jaune pour le joueur 2). Chaque jeton tombe alors le plus bas possible dans la colonne.

Le premier joueur qui aligne 4 jetons de sa couleur horizontalement, verticalement ou en diagonale
gagne la partie.

Modélisation informatique

Dans la suite, une grille de jeu sera modélisée comme une matrice Python (une liste de listes) de 6
lignes et 7 colonnes.
Les valeurs dans cette matrice seront:

¢ 0 (pour une case vide, c'est le cas initialement pour toutes les cases),
¢ 1 (sila case contient un jeton du joueur 1)
¢ 2 (sila case contient un jeton du joueur 2).

La case en haut a gauche correspond donc la case plateau[0][0], la case en bas a droite a plateau[5][6].
Ainsi, la grille de jeu suivante

‘ \
1)
. .l .) . ll .

est représentée par:

M 1 plateaul = [[0, 0, ©, 0, ©, O, O],
2 [0, @, 0, 0, 0, 0, @],
3 [0, @, 0, 0, 0, 0, @],
4 [0, 0, 0, 1, 0, 0, @],
5 (e, 1, 2, 2, 1, o, @],

Dans le script suivant, les fonctions suivantes sont fournies :

e plateau_vide() quirenvoie un plateau sans aucun jeton (toutes les valeurs sont a 0) ;
e afficher(plateau) quiréalise un affichage textuel du plateau;
e copie(plateau) quicrée etrenvoie une copie du plateau, sans la modifier.

https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Algorithme-du-Min-Max-appliqu%C3%A9-au-Puissance-4
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Algorithme-du-Min-Max-appliqu%C3%A9-au-Puissance-4
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Pr%C3%A9sentation
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Pr%C3%A9sentation
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Mod%C3%A9lisation-informatique
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Mod%C3%A9lisation-informatique

Entrée[23]:

Entrée[24]:

M 1
2
3
4
5
6
7
8
9

10

30
31
32
33

~a

plateaul

= [[0, 0, 0, 0, 0, 0, 0],
[0, o, 6, 0, 0, 0, O],
[6, 0, 0, 0, 0, 0, 0],
[eJ e) e) 1’ e’ 0) 9])
[e, 1, 2, 2, 1, o, @],
[2, 1, 2, 1, 2, 1, 2]]

def plateau_vide():

def

def

retu

affi

plateau vide()-> list
sortie : liste de liste de 6x7 contenant des ©

Renvoie un plateau vide, c'est-a-dire une matrice de 6 lignes et 7 c
rempli de ©

rn [[@ for _ in range(7)] for _ in range(6)]

cher(plateau):

"""afficher(plateau: list)

conv
for

prin

copi

Affiche le plateau, ne renvoie rien.:

entrée : plateau, liste de liste représentant le plateau de jeu

ersion = {0:"O", 1:"@", 2:"" "}
ligne in plateau:

for element in ligne:

print(conversion[element], end="")
print()
t()

e(plateau):

copie(plateau:list) -> list

Renvoie une copie du plateau en argument, ne modifie pas plateau
entrée : plateau, liste de liste représentant le plateau de jeu
sortie : liste de liste, copie du plateau

1- Ecrire une fonction jouer(plateau, joueur, colonne) quirenvoie une copie de plateau dans
laquelle joueur a joué dans la colonne en argument.

Si on généralise le jeu a une grille de n lignes et m colonnes, quelle sera la complexité de cette
fonction ?
Comment pourrait-on modifier la structure de données pour avoir la fonction ci-dessus en O (1) ?

M 1
2
3
4
5
6
7
8
9

10
11
12
13

ar

def jouer(plateau, joueur, colonne):

jouer(plateau :list, joueur: int, colonne : int) -> list

Renvoie une copie du plateau dans lequel le joueur (1 ou 2) a joué dans la
colonne (en supposant que c'est possible)

pass

14 # afficher(plateaul)

entrées : plateau, liste de liste représentant le plateau de jeu
: joueur, entier, numero du joueur (1 ou 2)
colonne, entier, numero de la colonne dans laquelle on veut me
sortie : liste de liste, représentant le plateau dans lequel a été ajou

—d . _a - AN

2- Ecrire une fonction coups_possibles(plateau) quirenvoie la liste des colonnes dans lesquelles
on peut jouer (autrement dit elles ne sont pas complétement remplies).
Quelle est la complexité de cette fonction ?

Entrée[26]: M def coups_possibles(plateau):
""" coups_possibles(plateau:list) -> list
Renvoie la liste des indices de colonnes dans lesquels on peut jouer.
entrées : plateau, liste de liste représentant le plateau de jeu

sortie : liste comportant les indices des colonnes possibles

OWoOoONOOUVTDSA WN PR

plateauTest = [[1 for j in range(7)] for i in range(6)]
10 plateauTest[0][2] = ©
11 plateauTest[0][4] = ©
12 afficher(plateauTest)

L. a4 _e IR S - _ AN\ 0Hra 1

Création d’'une heuristique

On appelle segment une suite de 4 cases alignées (dans nimporte quelle direction).
Un segment est décrit par M (i, j) les coordonnées d’'une case a l'extrémité, et

T”z(d,‘,dj)

le vecteur entre deux points consécutifs du segment ; le segment est donc constitué des points
MM+ ,M+27 ,M+37")
Le score d'un segment est lié au nombre de jetons de chaque joueur dans le segment.

« Sion trouve des jetons de chaque joueur dans le segment ou s'il n'y a aucun jeton, alors ce score
est 0.
« Sinon, on trouve la valeur dans un dictionnaire donné en argument. Dans I'exemple du
dico_score ci-dessous, on peut lire que si un segment contient 3 jetons du joueur 1 et O jeton du
joueur 2, alors le segment vaut 3 points. Un segment contenant 4 jetons de méme couleur signifie
que la partie est terminée, on donne donc un score suffisant dans ce cas pour déterminer le
vainqueur.

Entrée[28]: M 1 inf = float('inf')
2 dico_score = {(0, 1): -1, (0, 2): -2, (@0, 3): -3, (@, 4): -inf,

> - A ’ AN . A 7 a ~ S

3- Combieny a-t-il de segments dans un plateau au total ?
Entrée[]: M "

4- Ecrire une fonction score_segment(plateau, i, j, di, dj) quicalcule le score d'un segment
décrit par ses parameétres.

https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Cr%C3%A9ation-d%E2%80%99une-heuristique
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Cr%C3%A9ation-d%E2%80%99une-heuristique

Entrée[30]:

Entrée[32]:

Entrée[34]:

M 1 def score segment(plateau, i, j, di, dj, dicoS=dico_score):

2 """Calcule le score lié au semgent (i, j), (i + di, j + dj),

3 (i + 2*di, j + 2*dj), et (i + 3*di, j + 3*dj)

4 entrées : plateau, liste de liste représentant le plateau de jeu

5 : i,j: entiers, coordonnees du jeton

6 : di,dj : entiers, direction du segment

7 : dicoS, dictionnaire des scores au format (Nb de jetons joueur
8

9

sortie : liste comportant les indices des colonnes possibles

10

11 print(score_segment(plateaul, 5, 0, 0, 1, dico_score))
12 # 0

13 print(score_segment(plateaul, 2, 1, 1, 9, dico_score))
14 # 2

15 print(score_segment(plateaul, 2, 1, 1, 1,dico_score))
16 # -2

None
None
None

5- Ecrire une fonction score_plateau(plateau) quicalcule le score du plateau, ie la somme des
scores de tous les segments.

Remarque : il faut comprendre ici qu'un plateau avec un score élevé correspond a une situation plutét
avantageuse pour le joueur 1, un score faible correspond a une situation plutét désavantageuse pour
le joueur 1

M

1 def score plateau(plateau, dicoS=dico_score):

2 Calcule le score 1lié au plateau entier

3 (teste toutes les lignes, colonnes et diagonales).

4 entree : plateau, liste de liste représentant le plateau de jeu
5

6

7

sortie : score, entier, score du plateau entier

print(score_plateau(plateaul))

None

Une stratégie gloutonne

On s'intéresse dans un premier temps a la stratégie gloutonne : le joueur 1 (respectivement 2) joue,
parmi les coups possibles, celui qui lui donne le score maximal (respectivement minimal). En cas
d'égalité entre plusieurs coups possibles, on jouera dans la plus petite colonne possible.
6- Ecrire les fonctions strategie j1_glouton(plateau, score_plateau) et
strategie_j2_glouton(plateau, score_plateau) quirenvoie une copie du plateau sur laquelle le
coup optimal du joueur 1 et 2 respectivement a été joué, suivant la stratégie gloutonne.
M

def strategie_jl _glouton(plateau, score_plateau):
"""Renvoie une copie de plateau sur laquelle le coup optimal du premier jou

def strategie j2 glouton(plateau, score plateau):

1
2
3
4
5
6 """Renvoie une copie de plateau sur laquelle le coup optimal du premier jou
7

On suppose que les joueurs suivent cette stratégie.
7- Afficher les 3 premiers plateaux d'une partie.
Quel joueur va gagner cette partie ?

https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Une-strat%C3%A9gie-gloutonne
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Une-strat%C3%A9gie-gloutonne

Entrée[35]:

M 1

0000000
0000000
0]0)0]0)00]0,
0000000
0000000
0000000

0000000
0000000
0]0)0]0)00]0,
0]0)0]0)00]0,
0000000
eJeJol" Jolele)

0]0)0)0)00]e)
0000000
0000000
0000000
00O 00O
eJeJol" Jolele)

Algorithme du Min-Max

Désormais chaque joueur veut prendre en compte les coups ultérieurs dans la partie. On définit de
maniére récursive le coup optimal a profondeur p, comme cela a été vu en cours.

Principe de I'algorithme

Si le plateau est plein, on ne fait rien.

Sip =0, alors on joue un coup qui maximise (respectivement minimise) le score.

Sinon, on cherche un coup optimal de I'adversaire a profondeur p —1. On joue un coup qui
maximise (respectivement minimise) ce score optimal.

Si on arrive sur une partie gagnée (score égal a +« pour le joueur 1 ou —« pour le joueur 2), c'est
ce coup qui est joué

Par exemple, pour obtenir le coup optimal a profondeur 1, on regarde tous les coups possibles. Si un
coup permet de gagner, ce coup est automatiquement considéré comme ayant un score de victoire.
Pour les autres, on regarde le pire score possible aprés un coup de I'adversaire (on suppose qu'il joue
le mieux possible), et on choisit le coup qui donne, parmi ces pires scores, le meilleur score (pour
jouer le mieux possible).

8- Ecrire des fonctions maximin(plateau, p, score_plateau) trouvantle coup optimal pour le
joueur 1, cC'est-a-dire avec le score maximal, et minimax(plateau, p, score_plateau) trouvantle
coup optimal pour le joueur 2, c'est-a-dire avec le score minimal, mutuellement récursives. On pourra
renvoyer la copie du plateau sur lequel ce coup optimal a été joué.

https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Algorithme-du-Min-Max
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Algorithme-du-Min-Max
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Principe-de-l'algorithme
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Principe-de-l'algorithme

Entrée[36]:

Entrée[38]:

Entrée[]:

M 1 def maximin(plateau, p, score plateau):
2 """Renvoie le coup optimal a profondeur p pour le joueur 1
3 entrées : plateau, liste de liste représentant le plateau de jeu
4 p, entier, profondeur
5 score_plateau : nom de la fonction heuristique
6 sortie : liste de liste, grille obtenue avec le meilleur coup
7 nan
8
9
10 def minimax(plateau, p, score_plateau):
11 """Renvoie le coup optimal a profondeur p pour le joueur 2
12 entrées : plateau, liste de liste représentant le plateau de jeu
13 : p, entier, profondeur
14 : score_plateau : nom de la fonction heuristique
15 sortie : liste de liste, grille obtenue avec le meilleur coup

a -~ nnn

Faire s'affronter la stratégie min-max avec p = 3 (pour le joueur 1) contre la stratégie gloutonne (pour
le joueur 2).

Quelle stratégie gagne ? Faire de méme avec différents niveaux de profondeur pour les stratégies min-
max

M 1 def jeu(p,score plateau):
2 """ Joueur 1 joue min-max avec profondeur p et Joueur 2 joue glouton
3 entrées : p, entier, profondeur
4 score_plateau : nom de la fonction heuristique
5 nnu
6 plateau = plateau_vide()
7 joueur =1
8 while coups_possibles(plateau) != []:
9 # a compléter
10 afficher(plateau)
11 s = score_plateau(plateau)
12 if s == inf:
13 pass # a compléter
14 elif s == -inf:
15 pass # a compléter
16 # a compléter
17
18

an 4~ M. N\

Pour aller plus loin:

Negamax

Reprendre l'algorithme du min-max pour utiliser négamax comme présenté dans le cours.

[

1 def negamax(plateau, p, score plateau, signe):

2 entrées : plateau, liste de liste représentant le plateau de jeu
3 : p, entier, profondeur

4 : score_plateau : nom de la fonction heuristique

5

6

: signe, entier valant 1 ou -1
sortie : liste de liste, grille obtenue avec le meilleur coup

changer d’heuristique

Essayer une autre heuristique. Vous pouvez modifier celle présentée dans ce sujet, ou bien utiliser
celle présentée en cours, ou encore en concevoir une de votre propre imagination. Essayer de
confronter les différentes heuristiques entre elles pour tester leur qualité.

https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Pour-aller-plus-loin-:
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Pour-aller-plus-loin-:
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Negamax
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#Negamax
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#changer-d%E2%80%99heuristique
https://capytale2.ac-paris.fr/p/basthon/n/?kernel=python3&id=3064342&extensions=admonition,linenumbers#changer-d%E2%80%99heuristique

Entrée[4]: M 1 ## Heuristique du cours
2

3 tableau_score = [[3,
4 [4,
5 [5,
6
7
8
9

. .

o Ui

. .
N
-

10,
, 11, 13,
13,
10,

[5,
[4,
[3,

H OO0 o0 DS
- -
=
o
- e

-
(9]

-
N

-

a

L e S S)

H oo oo oD

-

