Exercice : Reconnaissance des chiffres

Dans cet exercice, nous allons a nouveau utiliser Scikit-learn qui est une bibliothéque libre Python
destinée a l'apprentissage automatique, et notamment le jeu de données digits :
nous disposons de 1 797 images de 8 x 8 pixels en niveaux de gris représentant les chiffres de 0 a 9.

tooctcoo0COCO

S il € U R N g
o0~ O A g S -
e - aba BT Sl
o g @ Uy o Nt D -
o ™ Y LA R
F b R O -
i 4 g S 8 LS pS e
O 0 @ W B N T el
il w4y @ W0 S LD D

{
L
3
&
5
&
-
2
9

2339481339

Ces données nous sont fournies par I'intermédiaire de 2 tableaux :

+ X est une matrice de :

0 1797 lignes pour les images,

0 64 colonnes pour les caractéristiques des images.

Pour tout k € [0, 1796], X[k] est un vecteur de RA64 qui représente I'image digitalisée d'un chiffre.
* Y est un vecteur de taille 1 797.

Pour tout k € [0, 1796], Y[k] correspond a I'étiquette de X[K], ie I'entier compris entre 0 et 9 représenté
par X[k].

Le fichier IA_Chiffres_Eleves.py est a votre disposition : il comporte des fonctions permettant d'afficher
les chiffres, ainsi que le squelette des fonctions que vous aurez a développer



Entrée[5]:

Entrée[6]:

M

OWoONOOUVUTDE WNER

A PADPPUWWWWWWWWWWNNNNMNMNNNNNMNNRPRRRPRRRRRRER
WINPRFRPOWOVWONOOTUPDWNROOVLONOUPD,WNROOVONOUPA,WNEREOO

44
45
46
47
48

from math import *

from random import *

import matplotlib.pyplot as plt
import numpy as np

from copy import deepcopy

from sklearn.datasets import load_digits

# Chargement du jeu de données des chiffres
chiffres=1load digits()

X=chiffres.data
Y=chiffres.target # recuperation des classes

# Affichage des chiffres
def afficherChiffres( X, Y, limit max=10 ):

no afficherChiffres( X: list, Y: list, limit max=1@ : int ):
entrees : X, liste du jeu de données
: Y, liste des etiquettes associees
: limit_max, entier, nombre de caractéres affichés de chaque f
classes, nombres = np.unique( Y, return_counts = True )
nombre_max = min( np.max(nombres), limit_max )
img = np.zeros( ( 100, nombre max*10 ) )
for i in range( 10 ) :
index_classe = np.where(Y == i)[0][:1imit_max]
for j, echantillon in enumerate( index_classe ):
img[i*10+1:i*10+9,j*10+1:j*10+9] = X[echantillon].reshape((8, 8))
plt.imshow( img, cmap='binary' )
plt.xticks([])
plt.yticks( 5 + 10*np.arange(10), np.arange(10) )
plt.show()

# tests affichage
# afficherChiffres( X, Y)
# afficherChiffres( X, Y, 14)

def obtenir_echantillons( X , Y, nbEchantillons = 10 ):

Donne une sélection aléatoire d indices d'échantillons pour chaque class¢

index = []
for classe in np.unique(Y):
index_classe = np.where(Y == classe)[0]

replace = len(index_classe) > nbEchantillons
index += list( np.random.choice(index_classe, size=nbEchantillons, repl
return index

index = obtenir_echantillons( X, Y )
afficherChiffres( X[index], Y[index] )
plt.show()

Apprentissage supervisé

On envisage l'algorithme des k plus proches voisins.
1. Ecrire la fonction distance( iml, im2 ) qui renvoie la distance euclidienne entre les images im1

etim2.

M

1
2
3
4
5
6
7
8

def distance( iml1 , im2 ):

d=0

for i in range( len( iml ) ):
d=d+ ( im2[i] - iml[i] )**2

d = np.sqgrt( d )

return d



Entrée[7]:

Entrée[8]:

2. Ecrire la fonction PlusProchesVoisins( X, Y, im, k ) quirenvoie la ou les étiquettes les plus
présentes parmi les k voisins de im (image de 8 x 8 pixels représentée sous la forme d'une liste).

H 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

def PlusProchesVoisins( X , Y , im , k ):

# calcul des distances entre chaque image du jeu de données et L'image im

lesDistances=[]

nbClasses = 10

for i in range( len(X) ):
d = distance( X[i] , im )
lesDistances.append( [d,Y[i]] )

# tri par ordre croissant de distance
lesDistances.sort()

# on cherche la classe majoritaire parmi les voisins les plus présents :

# on compte lLe nombre de voisins plus proches dans chaque catégorie
voisins=[@]*nbClasses
for i in range( k ): #on regarde lLes k plus proches voisins de im
voisins[ lesDistances[i][1] ]+=1
# on cherche lLa ou les catégories plus représentées
rep = [] # Liste des chiffres les plus représentés
maxi = @ # compte Le maximum
for i in range( nbClasses ):
if voisins[ i ] > maxi:
maxi = voisins[ i ]
rep = [ 1]
elif voisins[ i ]== maxi :
maxi = voisins[ i ]
rep.append( i )
return rep

3. Proposer des instructions pour partager les données en 2 groupes : un groupe pour
'apprentissage et I'autre pour le test.

H 1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

# Séparation des données d'apprentissage et de tests
AX,AY=[],[]
X, TY=[1,[]
dA={} # dictionnaire des clés déja choisies comme donnée d'apprentissage
dT={}
i=0 # compteur
while i<= len( X )-1:
j=randint( @, len( X )-1)
if j not in dA:
AX.append( X[j] )
AY.append( Y[j] )
dA[j]=1
i=i+l
elif j not in dT:
TX.append( X[j] )
TY.append( Y[]j] )
dT[ j 1=1
i=i+l
# apreés separation puis echantillonnage
index = obtenir_echantillons(AX, AY)
#afficherChiffres(AX, AY)
afficherChiffres( X[index], Y[index] )

4. Ecrire des instructions pour calculer le taux de bonnes prédictions sur les données de tests.



Entrée[9]: M 1 # Précision
2 nb = @ # compteur des bonnes prédictions
3 for i in range(len(TX)):
4 prediction=PlusProchesVoisins( AX, AY, TX[i], 3)
5 if len( prediction ) == 1: # pas d'indécision
6 if prediction[@] == TY[i]:
7

nb =nb + 1

Apprentissage non supervisé

On s'intéresse a nouveau a I'ensemble des images de chiffres de 0 a 9, mais cette fois-ci sans prendre
en compte leur étiquette.

Nous allons appliquer l'algorithme des k moyennes avec k = 10, de maniére a obtenir un
regroupement de ces images en 10 classes, que I'on espere correspondre aux différents chiffres
représentés. Pour rappel, ces images sont regroupées dans une liste X. Chaque image X][i] est
représentée par un vecteur de R64.

5. Expliquer l'algorithme des k-moyennes.

Entrée[ ]: M -

6. Ecrire une fonction barycentre( s ) qui calcule le barycentre d'un ensemble dimages
représenté par la liste s. Ce dernier est un vecteur de R64 (il représente lui aussi une image 8 x 8)

Entrée[10]: M 1 def barycentre(s):

2 bary=[0]*64

3 for k in range(len(s)):

4 for i in range(64):

5 bary[i]=bary[i]+s[k][i]#/Len(s)
6 bary[i] = bary[i] / len( s )

7 return bary

8

9

def dist( X1, X2 ):

10 d=0

11 for i in range(len(X1)):
12 d=d+(X1[1]-X2[1])**2
13 d= np.sqrt(d)

14 return d

15

7. Ecrire la fonction kmoyennes(X,k) qui prend en argument une liste X d'images et un entier k et
renvoie une liste de k classes ou sont regroupées les images. Pour cela on choisit aléatoirement k
centres initiaux lesCentres. Pour chaque image Xi, on calcule la valeur de lesCentresj la plus
proche de Xi pour ranger ce dernier dans la classe. On calcule les barycentres de ces classes. On
s'arréte quand ces derniers ne sont pas modifiés.



Entrée[11]:

Entrée[ ]:

M

M

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

def kmoyennes( X, k ):
# choix au hasard de kR images
changement = True
lesCentres=np.array([ X[randint(@,len(X)-1)] for i in range(k)] )

while changement: # on boucle tant que les centres bougent
lesClasses=[ [] for i in range(k) ] # kR classes
for i in range(len(X)):
# recherche du centre lLe plus proche de Xi
dmin = np.inf
jmin = -1
for j in range(k):
d = dist(X[i],lesCentres[j])
if d < dmin:
dmin = d
jmin = j

# on ajoute X1 a la classe lesClasses[jmin]
lesClasses[ jmin ].append( X[i] )

# calcul des nouveaux barycentres pour chaque classe
nouveauxCentres=np.array([barycentre(lesClasses[i]) for i in range(k)])
if nouveauxCentres.all() == lesCentres.all():

changement = False
else :
lesCentres=deepcopy( nouveauxCentres )
return lesClasses , lesCentres

lesClasses , lesCentres = kmoyennes(X,10)
index=[i for i in range(10)]

afficherChiffres( lesCentres, Y[index] )
plt.show()



