
digits

∈

∈

Entrée[5]: from math import *
from random import *
import matplotlib.pyplot as plt
import numpy as np
from copy import deepcopy

from sklearn.datasets import load_digits

Chargement du jeu de données des chiffres
chiffres=load_digits()

X=chiffres.data
Y=chiffres.target # recuperation des classes

Affichage des chiffres
def afficherChiffres(X, Y, limit_max=10):

""" afficherChiffres(X: list, Y: list, limit_max=10 : int):
 entrees : X, liste du jeu de données
 : Y, liste des etiquettes associees
 : limit_max, entier, nombre de caractères affichés de chaque type
 """

classes, nombres = np.unique(Y, return_counts = True)
nombre_max = min(np.max(nombres), limit_max)
img = np.zeros((100, nombre_max*10))
for i in range(10) :

index_classe = np.where(Y == i)[0][:limit_max]
for j, echantillon in enumerate(index_classe):

img[i*10+1:i*10+9,j*10+1:j*10+9] = X[echantillon].reshape((8, 8))
plt.imshow(img, cmap='binary')
plt.xticks([])
plt.yticks(5 + 10*np.arange(10), np.arange(10))
plt.show()

tests affichage
afficherChiffres(X, Y)
afficherChiffres(X, Y, 14)

def obtenir_echantillons(X , Y, nbEchantillons = 10):
'''Donne une sélection aléatoire d indices d'échantillons pour chaque classe.'''
index = []
for classe in np.unique(Y):

index_classe = np.where(Y == classe)[0]
replace = len(index_classe) > nbEchantillons
index += list(np.random.choice(index_classe, size=nbEchantillons, replace

return index

index = obtenir_echantillons(X, Y)
afficherChiffres(X[index], Y[index])
plt.show()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

distance(im1, im2)

Entrée[6]: def distance(im1 , im2):
d=0
for i in range(len(im1)):

d = d + (im2[i] - im1[i])**2
d = np.sqrt(d)
return d

1
2
3
4
5
6
7
8

PlusProchesVoisins(X, Y, im, k)

Entrée[7]: def PlusProchesVoisins(X , Y , im , k):
calcul des distances entre chaque image du jeu de données et l'image im
lesDistances=[]
nbClasses = 10
for i in range(len(X)):

d = distance(X[i] , im)
lesDistances.append([d,Y[i]])

tri par ordre croissant de distance
lesDistances.sort()

on cherche la classe majoritaire parmi les voisins les plus présents :
on compte le nombre de voisins plus proches dans chaque catégorie
voisins=[0]*nbClasses
for i in range(k): #on regarde les k plus proches voisins de im

voisins[lesDistances[i][1]]+=1
on cherche la ou les catégories plus représentées
rep = [] # liste des chiffres les plus représentés
maxi = 0 # compte le maximum
for i in range(nbClasses):

if voisins[i] > maxi:
maxi = voisins[i]
rep = [i]

elif voisins[i]== maxi :
maxi = voisins[i]
rep.append(i)

return rep

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Entrée[8]: # Séparation des données d'apprentissage et de tests
AX,AY=[],[]
TX,TY=[],[]
dA={} # dictionnaire des clés déjà choisies comme donnée d'apprentissage
dT={}
i=0 # compteur
while i<= len(X)-1:

j=randint(0, len(X)-1)
if j not in dA:

AX.append(X[j])
AY.append(Y[j])
dA[j]=1
i=i+1

elif j not in dT:
TX.append(X[j])
TY.append(Y[j])
dT[j]=1
i=i+1

apreès separation puis echantillonnage
index = obtenir_echantillons(AX, AY)
#afficherChiffres(AX, AY)
afficherChiffres(X[index], Y[index])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Entrée[9]: # Précision
nb = 0 # compteur des bonnes prédictions
for i in range(len(TX)):

prediction=PlusProchesVoisins(AX, AY, TX[i], 3)
if len(prediction) == 1: # pas d'indécision

if prediction[0] == TY[i]:
nb = nb + 1

nb nb / len(TX)

1
2
3
4
5
6
7
8

Entrée[]: 1

barycentre(s)

Entrée[10]: def barycentre(s):
bary=[0]*64
for k in range(len(s)):

for i in range(64):
bary[i]=bary[i]+s[k][i]#/len(s)

bary[i] = bary[i] / len(s)
return bary

def dist(X1, X2):
d=0
for i in range(len(X1)):

d=d+(X1[i]-X2[i])**2
d= np.sqrt(d)
return d

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

kmoyennes(X,k)

Entrée[11]: def kmoyennes(X, k):
choix au hasard de k images
changement = True
lesCentres=np.array([X[randint(0,len(X)-1)] for i in range(k)])

while changement: # on boucle tant que les centres bougent
lesClasses=[[] for i in range(k)] # k classes
for i in range(len(X)):

recherche du centre le plus proche de Xi
dmin = np.inf
jmin = -1
for j in range(k):

d = dist(X[i],lesCentres[j])
if d < dmin:

dmin = d
jmin = j

on ajoute Xi à la classe lesClasses[jmin]
lesClasses[jmin].append(X[i])

calcul des nouveaux barycentres pour chaque classe
nouveauxCentres=np.array([barycentre(lesClasses[i]) for i in range(k)])
if nouveauxCentres.all() == lesCentres.all():

changement = False
else :

lesCentres=deepcopy(nouveauxCentres)
return lesClasses , lesCentres

lesClasses , lesCentres = kmoyennes(X,10)
index=[i for i in range(10)]

afficherChiffres(lesCentres, Y[index])
plt.show()

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Entrée[]: 1

