Parcours de graphes

Objectifs :

e Rappeler la notion de graphe et les structures de données adaptées a leur représentation.
e Programmer des parcours en profondeur (révision de pile et de récursivité).
e Revoir l'algorithme de Dijkstra.

Notion et représentations de graphes non orientés

Un graphe non orienté est un couple (S, A) tel que:

e S estun ensemble, dont les éléments sont les sommets du graphe,
¢ A estun ensemble de paires de sommets, appelés arétes du graphe.

On peut le représenter :

« Soit par une liste d’adjacence ou un dictionnaire d’adjacence : on considére les listes de
voisins de chaque sommet du graphe.
C'est intéressant lorsque le graphe est peu dense (peu d'arétes).

 Soit par une matrice d’adjacence : une matrice (symétrique) M tel que Mi,j vaut 1 s'ily a une
aréte entre le sommet n°i et le sommet n°j et 0 sinon.
Cest intéressant lorsque le graphe est dense (beaucoup d'arétes).

Exemple : o o o
@ (o)
)

S=]0,7] et A={ {0, 1}, {1, 2}, {3, 4}, {3, 5}, {3.6}, (4,7} }

Liste d’adjacence : Dictionnaire d’adjacence : Matrice d’adjacence :

L= [[1], =t B0, M= [[e,1,0,0,0,0,0,0],
[2, e], k5 [0l [1,0,1,0,0,0,0,0],
[1], 2 i [l [e,1,0,0,0,0,8,0],
(6, 4, 5], a5 L %y [e,0,0,0,1,1,1,0],
[7, 31, %=1 3l [e,0,0,1,0,0,8,1],
(31, s & [31, [¢,0,0,1,0,0,8,0],
(31, 6 [31, [e,0,0,1,0,0,8,0],
[4] 7 = 4] [¢,0,0,0,1,0,8,0]

] 1]

(Indicesentre 0 et 7)

Définir une fonction genereDico quiprend en parametre d'une liste d'adjacence d'un graphe et la
tranforme en dictionnaire d'adjacence.

Définir une fonction genereMatrice quiprend en parameétre d'une liste d'adjacence d'un graphe et
la tranforme en liste de liste représentant la matrice d'adjacence.

Typesetting math: 100%

Entrée[17]: M 1 def genereDico(L):
2 """ genereDico(L: list) -> dict
3 entrée : L, liste correspondant la liste d'adjacence du graphe
4 sortie : dico, dictionnaire correspondant au dictionnaire d'adjacence «
5 win
6 dico={}
7 for i in range(len(L)) :
8 dico[i] = []
9 for j in range(len(L[i])):
10 dico[i].append(L[i][]])
11 return dico
12
13 def genereMatrice(L):
14 """ genereDico(L: list) -> list
15 entrée : L, liste correspondant la liste d'adjacence du graphe
16 sortie : mat, liste de listes, correspondant a la matrice d'adjacence di
17 e
18 n = len(L)
19 # mat=[[@]*n]*n
20 mat = [[@ for j in range(n)] for i in range(n)]
21 print(mat)
22 for i in range(len(L)) :
23 for val in L[i]:
24 mat[i][val] = 1
25 return mat
26

27 # L: liste d'adjacence du graphe d'exemple

28 L = [[1], [2, @], [1], [6, 4, 51, [7, 31, [3], [31, [4]]

29 print(genereDico(L))

30 # {o: [1], 1: [2, @], 2: [1], 3: [6, 4, 5], 4: [7, 3], 5: [3], 6: [3], 7: [4]}
31 print(genereMatrice(L))

32 # [[@J 1) e) @J eJ @J eJ e]) [11 e} 1) e} e) e} eJ @]J [@J 11 e) @J e} @J e} @].

{e: [1], 1: [2, e], 2: [1], 3: [6, 4, 5], 4: [7, 3], 5: [3], 6: [3], 7: [4]}

[[6, o, 0, 0, 0, 0, 0, 0], [0, ©, ©, @, @, O, O, @], [0, O, O, 0, 0, 0, 0, 0], [0,
@, 0, 8, 0, 0, 0, 0], [0, @, 0, 0, @, 0, 0, 0], [0, 0, 0, 0, 0, @, O, 0], [0, 0, 0,
0, 0, 6, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]]

[[6, 1, o, 0, 0, 0, 0, 0], [1, ©, 1, 0, O, O, O, @], [0, 1, 0, 0, 0, 0, 0, 0], [0,
0) 0) 0) 1) 1) 1J 0]) [eJ @) 0) 1) 0) 0) @J 1]) [0) 0) @J 1) @J 0’ 0) 0]) [e) @J 0)
1J 0) 0) @J e]) [01 0) 0) e) 1) 0) 0) 0]]

Parcours en profondeur et en largeur

Parcours en profondeur

Le principe du parcours en profondeur d'un graphe est celui du backtracking :

Pour parcourir tous les sommets d'un graphe, on part d'un sommet que I'on marque comme visité,
puis on visite I'un de ses voisins que I'on marque, et ainsi de suite. Lorsque I'on ne trouve plus de
Voisin, on revient en arriére et on passe au voisin suivant du sommet précédent.

On peut implémenter un parcours en profondeur :

¢ soit avec une fonction récursive,
* soit en utilisant une pile.

La fonction globale parcourir fait appel a une fonction parcourir_voisins permettant de
parcourir les voisins d'un sommet au sens large : c'est-a-dire tous les sommets que l'on peut atteindre
a partir du sommet de départ. C'est la fonction parcourir_voisins quisera écrite récursivement ou
a l'aide d'une pile.

Avec le graphe codé par une liste d'adjacence L, on a donc en pseudo-code suivant :

Typesetting math: 100%

1 parcourir(L)

2 Pour chaque sommet faire

3 Si le sommet n'est pas marqué comme visité alors
4 parcourir_voisins(L,sommet)

5 finsi

6 finpour

7

8 avec parcourir_voisins pouvant étre définie de 2 maniéres : récursive ou itérative
9 ##### Version récursive
10 parcourir_voisins(L, sommet)
11 Marquer le sommet comme visité

12 Traiter le sommet

13 Pour chaque voisin du sommet faire

14 Si le voisin n'est pas marqué comme visité alors
15 parcourir_voisins(L,voisin)
16 finsi
17 finpour
18

19 #### Version avec une pile
20 parcourir_voisins(L,sommet)

21 Créer une pile

22 Marquer le sommet comme visité

23 Empiler le sommet

24 Tant que la pile n'est pas vide faire

25 Dépiler un sommet

26 Traiter 1le sommet

27 Pour chaque voisin du sommet faire

28 Si le voisin n'est pas marqué comme visité alors
29 Marquer le voisin comme visité
30 Empiler le voisin

31 finsi

32 finpour

33 fintantque

2A

1. On va effectuer un parcours en profondeur (avec les 2 approches) dans lequel on gardera en
mémoire l'ordre dans lequel les sommets ont été parcourus.

1.1-Définir 2 fonctions parcours_voisins_rec(L, sommet, visite, parcours) et
parcours_voisins_pile(L, sommet, visite, parcours) prenant pour parametres:

L, la liste d’adjacence,

sommet , le numero du sommet a partir duguel on commence,

visite, une liste de booléens telle que visite[sommet] vaut True lorsque le sommet a été
visité, modifiée par effet de bord,

parcours , une liste initialement vide, dans laquelle on empilera les numéros des sommets au fur
et a mesure du parcours, modifiée par effet de bord

1.2- Definir la fonction parcourir(L, fonctionParcours = parcours_voisins_rec) quia pour
parametres :

* la liste d'adjacence L:

¢ le nom de la fonction qui sera appelée pour effectuer le parcours en profondeur
fonctionParcours (ici ce parameétre pourra prendre pour valeur parcours_voisins_rec ou
parcours_voisins_pile lors de 'appel)

Cette fonction parcourt I'ensemble des sommets pas encore visités grace a la fontion
fonctionParcours etretourne laliste parcours dessommets visités, dans l'ordre de la visite.
Tester avec le graphe donné au début du TP.

Typesetting math: 100%

Entrée[19]: M

Typesetting math: 100%

65

TP graphes

Parcours en profondeur
def parcours_voisins_rec(L, sommet, visite, parcours):
"""parcours récursif des voisins non visités de sommet
parcours_voisins_rec(L : list, sommet: int, visite: list, parcours:
entrees :L : liste, liste d'adjacence du graphe
sommet : entier, Numero du sommet dont on part
visite : liste de booléens qui indique pour chaque sommet(i
s'il a déja été visité (True ou False), modifiée par eff¢
parcours : liste des sommets visités (dans l'ordre de la vi

visite[sommet] = True
parcours.append(sommet)
lesVoisins = L[sommet]
for voisin in lesVoisins
if not visite[voisin]:
parcours_voisins_rec(L,voisin, visite, parcours)
"""Parcours en profondeur itératif"""
from collections import deque
def parcours_voisins_pile(L, sommet, visite, parcours):
"""parcours des voisins non visités de sommet a 1'aide d'une pile
pile = [sommet]
visite[sommet] = True
while len(pile) != 0:
sommetl = pile.pop()
parcours.append(sommetl)
for voisin in L[sommetl]:
if not visite[voisin]:
visite[voisin] = True
pile.append(voisin)

version iterative en utilisant les deque en python
from collections import deque
def parcours_voisins_pile(L, sommet, visite, parcours):
"""parcours des voisins non visités de sommet a 1'aide d'une pile
pile = deque([sommet])
visite[sommet] = True
while len(pile) != 0:
sommetl = pile.pop()
parcours.append(sommetl)
lesVoisins = L[sommetl]
for voisin in lesVoisins:
if not visite[voisin]:
visite[voisin] = True
pile.append(voisin)

def parcourir(L, fonctionParcours = parcours voisins rec):
Parcours en profondeur des sommets du graphe"""
parcourir(L : list)-> list
entrees : L, liste, liste d'adjacence du graphe
: fonctionParcours, nom de la fonction a appeler pour le pa
sortie : parcours, liste des sommets visités (dans l'ordre de la vi

n = len(L)
visite = [False for _ in range(n)] # permet de savoir si un sommet a été vi.:
parcours = [] # permet de garder les sommets dans L'ordre de parcours
for sommet in range(n):
if not visite[sommet]:
fonctionParcours(L, sommet, visite, parcours)
return parcours

L = [[1], [2, e], [1], [6, 4, 5], [7, 3], [3], [3], [4]]

66
67
68
69
70
71
72
73

(o,
(e,

print(parcourir(L))

ou

print(parcourir(L, parcours voisins rec))
[eJ 11 2} 31 6} 4) 7) 5]

print(parcourir(L, parcours_voisins_pile))
[0, 1, 2, 3, 5, 4, 7, 6]

6, 4, 7, 5]

1J 2’ 3)
1J 2’ 3) 5) 4) 7) 6]

Parcours en largeur

Il n'est pas facile de programmer un parcours en largeur récursivement car il ne s'agit plus de
parcourir chaque voisin récursivement. Par contre, c'est tres facile itérativement : il suffit de reprendre
le parcours en profondeur et de remplacer la pile par une file.

1.3- Créer la fonction parcours_voisins_file implémentant le parcours en largeur et I'appeler avec
parcourir

Entrée[20]: M

33

35

(e,

Parcours en lLargeur

from collections import deque
def parcours_voisins_file(L,sommet, visite, parcours):
"""parcours des voisins non visités de sommet a 1'aide d'une pile
file = deque([sommet])
while len(file) != o:
sommet = file.pop()
if not visite[sommet]
visite[sommet] = True
parcours.append(sommet)
for voisin in L[sommet]:
if not visite[voisin]:
visite[sommet] = True
file.appendleft(voisin)

def parcourir(L, fonctionParcours = parcours voisins rec):
Parcours en profondeur des sommets du graphe"""
parcourir(L : list)-> list
entrees : L, liste, liste d'adjacence du graphe
: fonctionParcours, nom de la fonction a appeler pour le pa
sortie : parcours, liste des sommets visités (dans l'ordre de la vi

n = len(L)
visite = [False for _ in range(n)] # permet de savoir si un sommet a été vi.:
parcours = [] # permet de garder lLes sommets dans L'ordre de parcours

for sommet in range(n):
if not visite[sommet]:
fonctionParcours(L, sommet, visite, parcours)
return parcours

L = [[1], [2, e], [1], [6, 4, 5], [7, 3], [3], [3], [4]]
print(parcourir(L, parcours_voisins file))
[eJ 1J 2} 31 6} 4) 5} 7]

1, 2, 3, 6, 4, 5, 7]

Composantes connexes d'un graphe

2. On souhaite maintenant déterminer les composantes connexes du graphe : ce sont les classes
d'équivalence de la relation d'équivalence « il existe un chemin (suite d'arétes successives) reliant

Typesetting math: 100%

les deux sommets » sur 'ensemble des sommets.Pour ce faire faire, nous allons adapter les
fonctions précédentes

Le graphe d'exemple comporte 2 composantes connexes.

D'abord, nous allons adapter le parcours en profondeur ('une ou 'autre version) en créant une
fonction parcours_voisins ayant pour parametres :

e Laliste L d'adjacence du graphe,

e une liste CC, initialisée avec des valeurs -1, telle que CC[sommet] estle numéro de la
composante connexe a laquelle appartient le sommet. Cette liste sera modifiée par effet de bord
au fur et a mesure du parcours
Dans cette liste, la valeur -1 correspond donc a un sommet non visité.

e un entier numero_CC, qui correspond au numéro de la composante connexe en cours de
parcours.

2.1- Définir la fonction parcours_voisins(L, sommet, CC, numero_CC)
2.2- Définir la fonction listeComposantesConnexes quiest une adaptation de la fonction
parcourir (1.2). Cette fonction fait appel a la fonction parcours_voisins . Cette fonction prend en

parametre la liste d'adjacence L . Elle renvoie la liste CC ainsi que le nombre de composantes
connexes différentes dir sranhe

Typesetting math: 100%

Entrée[22]: M

Typesetting math: 100%

OWoONOOUVUTDE WNER

oo oauvuuviuviunuuununuudbhpdb,BEDPDDDDPEPREPREDWWWWWWWWWWNNNNNMNMNNNNMNNNRRRRERPRRERPRRERLER
WINERFRPOUOUOUNIOTUVDA,WNRPOOUOONOTUDEWNRPOOVUONOUPDDWNROOLVONOUPDWNEREROOVONOUPA,WNEREOO

64

)}
Ul

Composantes connexes

Liste des composantes connexes récursif
def parcours_voisins(L, sommet, CC, numero_CC):
""" parcours_voisins(L : list, sommet: int, CC: list, numero_CC:int):
entrees :L : liste, liste d'adjacence du graphe
sommet : entier, Numero du sommet dont on part
CC : liste initialisée avec des valeurs -1,
telle que CC[sommet] est le numéro de la composantt
modifiée par effet de bord
numero_CC : int, numéro de la composante connexe
CC[sommet] = numero_CC
for voisin in L[sommet]:
if CC[voisin] < @:
parcours_voisins(voisin, CC, numero_CC)
def listeComposantesConnexes(L):
""" listeComposantesConnexes(L : list) -> list, int:
entrees :L : liste, liste d'adjacence du graphe
sorties :CC : liste initialisée avec des valeurs -1,
telle que CC[sommet] est le numéro de la composant
int, nombre de composantes connexes du graphe

n = len(L)
CC = [-1 for _ in range(n)]
numero_CC = -1

for sommet in range(n):
if CC[sommet] < O:
numero_CC += 1
parcours_voisins(L,sommet, CC, numero_CC)
return CC, numero_CC + 1

Liste des composantes connexes avec pile
def parcours_voisins(L,sommet, CC, numero CC):
pile = [sommet]
while pile != []:
sommet = pile.pop()
CC[sommet] = numero_CC
for voisin in L[sommet]:
if CC[voisin] < @:
pile.append(voisin)
def listeComposantesConnexesv2(L):

n = len(L)
CC = [-1 for _ in range(n)]
numero_CC = -1

for sommet in range(n):
if CC[sommet] < O:
numero_CC += 1
parcours_voisins(L,sommet, CC, numero_CC)
return CC, numero_CC + 1

#Tests sur Lle graphe du début de TP

CC = [-1 for _ in range(len(L))]
parcours_voisins(L, 1, CC, 0)

print(cc) # [e, 0, 0, -1, -1, -1, -1, -1]

parcours_voisins(L, 2, CC, 1)
print(CC) # [0, 0, 0, 1, 1, 1, 1, 1]

print(listeComposantesConnexesv2(L))
([e, 0, 6, 1, 1, 1, 1, 1], 2)

print(listeComposantesConnexes(L))
([@J e} e} 1} 11 1) lJ 1]) 2)

66
67
[OJ 0: 0: '1) '11 -1J -1J '1]
[01 @, 1: '11 _1) '11 '1) _1]
([e, @, 0, 1, 1, 1, 1, 1], 2)
([e, @, 0, 1, 1, 1, 1, 1], 2)

3. On peut démontrer que si I'on établit au hasard un graphe G ayant n sommets et m arétes, avec
m proche de n, il apparaitra presque sirement une composante géante alors que les autres
composantes seront soit tres petites, soit des sommets isolés. On propose ici d'observer ce
phénomene.

3.1- Ecrire une fonction compte_ComposantesConnexes(CC) qui prend pour paramétres une liste
CC comme ci-dessus et qui, en temps linéaire, réalise un affichage au format suivant :
Ily a 1301 sommets isolés.

Il y a 185 composantes connexes de taille 2.

Iy a 60 composantes connexes de taille 3.

Il y a 24 composantes connexes de taille 4.

Ily a 4 composantes connexes de taille 5.

Il y a 4 composantes connexes de taille 6.

Ily a 5 composantes connexes de taille 7.

Il y a 1T composante connexe de taille 8.

Il y a 3 composantes connexes de taille 9.

Il y a 1T composante connexe de taille 12.

Ily a 1 composante connexe de taille 7927.

Entrée[]: M 1 def compte_ComposantesConnexes(L):

2 """ compte_ComposantesConnexes(L : list):

3 entrees :L : liste, liste d'adjacence du graphe
4 Wi

5 CC, nb_CC = listeComposantesConnexes(L)

6 tailleCC = [@ for _ in range(nb_CC)]

7 for i in CC:

8 tailleCC[i] += 1

9 compte = [0 for _ in range(max(tailleCC) + 1)]

10

11 for n in taillecCC:

12 compte[n] += 1
13
14 if compte[l] != @:
15 s = 's' if compte[1l] != 1 else '’
16 print('{0} sommet{1l} isolé{1}.'.format(compte[1l], s))
17

18 for i in range(2, len(compte)):

19 if compte[i] != o:

20 s = 's' if compte[i] > 1 else ''

21 print('{0} composante{l} connexe{l} de taille {2}.'.format(compte[i
22

23 compte ComposantesConnexes(L)
24 # 1 composante connexe de taille 3.

o}l = H A ,AamAaA~An A ~ArnnnAA AAn 4+~ 1 A C

3.2- Vérifier que le phénomeéne se produit bien en utilisant la fonction graphe_aleatoire(n, m) qui
constitue un générateur de graphes aléatoires

Typesetting math: 100%

Entrée[23]: M # graphe aléatoire

from random import randint, seed

"""renvoie la liste d'adjacence d'un graphe aléatoire a

1

2

3

4

5 def graphe_aleatoire(n, m):
6

7 n sommets et m arétes.

8

9

seed()

L =[] for _ in range(n)]
10 nb_aretes = 0
11 while nb_aretes < m:
12 sl = randint(@, n - 1)
13 s2 = randint(@, n - 1)
14 if s1 != s2 and s2 not in L[s1]:
15 nb_aretes += 1
16 L[s1].append(s2)
17 L[s2].append(sl)
18 return L

19 d = 10000

20 compte_ComposantesConnexes(graphe_aleatoire(d, d+10))
21 "t

22 1357 sommets isolés.

23 179 composantes connexes de taille 2.
24 50 composantes connexes de taille 3.
25 18 composantes connexes de taille 4.
26 10 composantes connexes de taille 5.
27 4 composantes connexes de taille 6.
28 3 composantes connexes de taille 8.
29 1 composante connexe de taille 9.

30 1 composante connexe de taille 7956.

21 nonn

Traceback (most recent call last):
File "<input>", line 20, in <module>
NameError: name 'compte_ComposantesConnexes' is not defined

Coloration de graphes

Colorier un graphe

Colorier un graphe consiste a associer une couleur a chacun de ses sommets, de telle maniére que
deux sommets adjacents (voisins) ne soient jamais de la méme couleur.

Le nombre chromatique d'un graphe correspond au nombre minimal de couleurs que I'on peut
utiliser pour le colorier. Déterminer ce nombre est un probléme informatique difficile : on ne
connait pas d'algorithme général efficace.

Les problémes de coloriage de graphes ont de trés nombreuses applications : placement
d'antennes réseau, ordonnancement de taches, plan de vols d'une compagnie aérienne,
conception d'emploi du temps.

Une couleur sera simplement caractérisée par un entier positif ou nul.

4. Ecrire une fonction degres(M) qui a partir d'une matrice d'adjacence M, renvoie la liste des
degrés de chaque sommet, c'est-a-dire la liste du nombre de voisins de chaque sommet. On
pourra utiliser la fonction sum.

Typesetting math: 100%

Entrée[26]: M

Typesetting math: 100%

1 def degres(M):

2 """ degres(M:1list)->1list

3 renvoie la liste des degrés des sommets du graphe dont M est liste d'a
4 entree : M, liste de listes, correspondant a la matrice d'adjacence du |{
5 sortie : liste correspondant aux degrés de chaque sommet du graphe
6 win

7 n = len(M)

8 return [sum(M[i][j] for j in range(n)) for i in range(n)]

9
10 # Tests

11 M = [[e,1,0,0,0,0,0,0],

12 [1,0,1,0,0,0,0,0],

13 [0,1,0,0,0,0,0,0],

14 [0,0,0,0,1,1,1,0],

15 [0,0,0,1,0,0,0,1],
16 [0,0,0,1,0,0,0,0],
17 [0,0,0,1,0,0,0,0],
18 [0,0,0,0,1,0,0,0]]
19

20 print(degres(M))

a1 H 1 ho] 1 2 ho] 1 1 11

[1J 2J 1) 3) 2) 1) 1) 1]

. Ecrire une fonction ordre_sommets (M) renvoyant la liste des sommets triés par ordre

décroissant de degré.
Ici, on n'impose pas la méthode de tri : utiliser son tri de prédilection, éventuellement la fonction
sorted.

Entrée[28]: M 1 def ordre_sommets(M):
2 """ ordre_sommets(M:list)->list
3 renvoie la liste des sommets triée par ordre croissant de degré.
4 entree : M, liste de listes, correspondant a la matrice d'adjacence du |{
5 sortie : liste des sommets du graphe triée par ordre décroissant de degi
6 no deg = degres(M)
7 n = len(M)
8
9 # Tri rapide en place : on n'a pas choisi la facilité !
10 def partition(T, debut, fin):
11 "partitionnement pour tri rapide"""
12 pivot = T[debut]
13 finpp = debut
14 for i in range(debut + 1, fin):
15 if deg[T[i]] > deg[pivot]:
16 finpp += 1
17 T[finpp], T[i] = T[i], T[finpp]
18 T[debut], T[finpp] = T[finpp], T[debut]
19 return finpp
20
21 def tri_rapide(T, debut, fin):
22 "Tri en place de T[debut:fin] par ordre décroissant de degrés”
23 if debut < fin:
24 finpp = partition(T, debut, fin)
25 tri_rapide(T, debut, finpp)
26 tri_rapide(T, finpp + 1, fin)
27
28 sommets = [i for i in range(n)]
29 tri_rapide(sommets, @, len(sommets))
30 return sommets
31

32 # Alternative avec sorted :
33 def ordre_sommets(M):

34 "renvoie la liste des sommets triée par ordre croissant de degré."

35 n, deg = len(M), degres(M)

36 return sorted([i for i in range(n)], key=lambda x: deg[x], reverse=True)
37 # Tests

38 print(ordre_sommets(M))
39 #[3, 1, 4, 0, 2, 5, 6, 7]
AN
File "<input>", line 6
""" ordre_sommets(M:1list)->list
renvoie la liste des sommets triée par ordre croissant de degré.
entree : M, liste de listes, correspondant a la matrice d'adjacence du grap
he
sortie : liste des sommets du graphe triée par ordre décroissant de degré
deg = degres(M)

ANAN

SyntaxError: invalid syntax

6. On suppose avoir partiellement colorié le graphe de matrice M et posséder une liste couleur
contenant, pour chaque sommet d'indice i, -1 s'il n'a pas été colorié et, sinon, sa couleur (qui est
un entier entre 0 et n-1 ou n correspond au nombre de sommets). couleur est donc une liste de
longueur n.

Ecrire une fonction couleur_voisins(M, sommet, couleur) renvoyant une liste de n booléens telle
que I'élément d'indice i est a True si au moins un des voisins de sommet a la couleur i, et a False dans
le cas contraire.

Typesetting math: 100%

Entrée[37]: M 1 def couleur voisins(M, sommet, couleur):

2 """ couleur voisins(M: list, sommet:int, couleur:list)->list

3 renvoie une liste de n booléens telle que 1’élément

4 d’indice i est a True si au moins un des voisins de sommet a la

5 couleur i, et a False dans le cas contraire.

6 entrees : M, liste de listes, correspondant a la matrice d'adjacence du
7 sommet, entier, numero du sommet

8 couleur, liste des couleurs des sommets. La couleur est a -1
9

sortie : liste couleurs, liste de booleens

10 e

11 n = len(M)

12 # booléen pour savoir si une couleur est utilisée par un voisin
13 liste_couleur = [False for _ in range(n)]

14 for voisin in range(n):

15 if M[sommet][voisin] == 1 and couleur[voisin] != -1:

16 liste couleur[couleur[voisin]] = True

17 return liste couleur

18

19 # Tests

20 couleur = [-1]*1en(M)

21 print(couleur_voisins(M, @, couleur))

22 #[False, False, False, False, False, False, False, False]
23 couleur[1]=2

24 print(couleur_voisins(M, @, couleur))

25 #[False, False, False, False, False, False, False, False]
26 print(couleur_voisins(M, 5, couleur))

27 #[False, True, False, False, False, False, False, False]
28

[False, False, False, False, False, False, False, False]
[False, False, True, False, False, False, False, False]
[False, False, False, False, False, False, False, False]

7. Ecrire un algorithme glouton de coloration :

Le principe est de colorier un sommet en prenant la couleur de numéro minimal qui ne soit pas déja
utilisée par I'un des sommets, en procédant par ordre décroissant de degrés. On renverra la liste des
couleurs de chaque sommet, qui pourra avoir été initialisée avec des valeurs -1 au début de la
fonction.

Tester par exemple avec le graphe du départ et avec des graphes complets (dans lesquels tous les
sommets sont adjacents).

Exemple de graphe complet :

Typesetting math: 100%

Entrée[]: M

1 def color_glouton(M):

2 n = len(M)

3 couleur = [-1 for _ in range(n)]

4 sommets = ordre_sommets(M) #tri des sommets par ordre décroissant
5

6 for s in sommets:

7 liste_couleur = couleur_voisins(M, s, couleur)

8

9 # Détermination de La couleur minimale non utilisée
10 mini = @
11 while liste couleur[mini]:

12 mini +=1

13 couleur[s] = mini

14

15 return couleur
16

17 print(color_glouton(M))
18 #[1, 0, 1, 0, 1, 1, 1, 0]

19

20

21 def K(n):

22 """"Renvoie le graphe complet K_n"""
23 M = [[1 for i in range(n)] for j in range(n)]
24 for i in range(n):

25 M[i][i] = @

26 return M

27

28 print(color_glouton(K(10)))

20 H+ 'n 1 ho] 2 v C z vl o N1

Algorithme de Dijkstra

(D
Typesetting math: 100\%

Graphe orienté pondéré

Un graphe orienté pondéré est un triplet (S, A, p) tel que:

e S estun ensemble dont les éléments sont les sommets du graphe,

e A estun ensemble de couples de sommets, appelés arétes orientées ou arcs du graphe (cette
fois I'ordre est important).

e p est une application définie sur A a valeur dans R : chaque arc (a, b) est associé a un poids
p(a,b).On le représente par une matrice d'adjacence : une matrice M tel que Mi, j vaut p(si,
sj) s'ily a une aréte entre le sommet n°i et le sommet n°j et « sinon.

On appelle poids d'un chemin dans le graphe la somme des poids des arétes qui le compose,
ce que I'on note (abusivement) p(sO,...,sn) =73 p(si,si+1) pourideOan.

Exemple

Matrice d'adjacence :

co 20 oo 2 100

20 oo 4 co 10

M=| o0 4 oo 3 (o'}
2 oo 3 oo o0

100 10 oo o0 o0

ans limplémentation, pour «, il suffit de prendre une valeur strictement plus grande que la somme

des poids).

On cherche, étant donnés 2 sommets i et j, a déterminer un chemin de poids minimal reliantiaj,
avec l'algorithme de Dijkstra, valable seulement lorsque tous les poids sont positifs ou nuls.

Il repose sur le constat que si (sO, ..., sN) est un plus court chemin, alors pourtout0 < p<q <N, (sp
,...,SQ)enestun aussi.

Le principe est alors de réaliser une partition des sommets S = Svisites U Sa_visiter avec Svisites
initialisé a {s0}, qui grossit, et tel que:

e on connait la distance minimale de sO a chaque sommet de Svisites,
e pour chaque sommet s de Sa_visiter , on connait la distance minimale (éventuellement infinie) de
sO a s en ne passant que par des sommets de Svisites.

A chaque étape,

¢ on choisit un sommet smini de Sa_visiter dont la distance a sO est minimale,

 on le bascule dans Svisites (donc on le supprime de Sa_visiter),

e Pour chaque aréte (smini, s) avec s € Sa_visiter , on met a jour la distance de s0 a s via Svisites :
d(s)< min(d(s), d(smini)+p(smini,s))

Dans limplémentation, il nous suffira de gérer une liste correspondant a Sa_visiter et un tableau de
distance d a s0 via Svisites .

A la fin de l'algorithme, d contiendra les valeurs des plus courts chemins de sO & n'importe quel
sommet du graphe. Pour pouvoir retrouver les chemin de longueur minimale permettant d'aller de sO
a un sommet s donner, il faut de plus garder en mémoire dans un tableau predecesseur le dernier
sommet ayant permis une mise a jour de d(s) : on calcule alors le chemin a I'envers en partant de s et
en remontant tous les prédécesseurs jusqu’au revenir a s0.

8- Décrire I'aleorithme pour le granhe donné en exemnole :

Sm’sires d(ﬂ) d” d(z} d(S] d(4)

{} 0 oo o 00 o
{0} 20 (o/e) 7 100
{0,3} 20 5 100

et retrouver les chemins de longueur minimale du sommet 0 a n‘importe quel sommet.

9- Ecrire une fonction sommet_mini(S_a_visiter, d) renvoyantunsommetde S_a_visiter
correspondant a un élément minimal de la liste de distances d .

Typesetting math: 100%

Entrée[4]: M import numpy as np

infini = np.inf

1
2
3
4 M2 = [[infini, 20, infini, 2, 100],
5 [20, infini, 4, infini, 10],
6 [infini, 4, infini, 3, infini],
7 [2, infini, 3, infini, infini],
8 [1e0, 10, infini, infini, infini]]
9
10 def sommet mini(S2, d):
File "<input>", line 10
def sommet _mini(S2, d):

N

SyntaxError: incomplete input

Entrée[14]: M ## Dijkstra

infini = float('inf")

[20, infini, 4, infini, 10],
[infini, 4, infini, 3, infini],
[2, infini, 3, infini, infini],

1

2

3

4

5 M2 = [[infini, 20, infini, 2, 100],

6

7

8

9 [1e0, 10, infini, infini, infini]]

10

11 def sommet mini(S2, d):

12 """ sommet_mini(S2, d) -> int

13 entree : S2, liste de numeros des sommets a visiter
14 : d, liste de distances

15 sortie : mini, numero du sommet pour lequel la distane est minimale
16 e

17 mini = S2[0]

18 for s in S2:

19 if d[s] < d[mini]:

20 mini = s

21 return mini

22

23 import numpy as np

24 S _a visiter=[1, 2, 4]

25 d=[0, 20, 5, 2, 100]

26

27 print(sommet mini(S_a visiter, d)) #2

20

2

10- Ecrire une fonction Dijkstra(M, depart) renvoyant le tableau des plus courts chemins & partir
du sommet depart .

Compléter cette fonction pour qu'elle retourne en plusune liste contenant un chemin réalisant ce
minimum jusqu’a chaque sommet du graphe (on pourra laisser le chemin dans 'ordre inverse).

Entr‘é@[6]: N 1 AnL NSl c+knal/M Aahii+\ .
File "<input>", line 1

def Dijkstra(M, debut):

VAN

SyntaxError: incomplete input

Typesetting math: 100%

Entrée[16]: M

Typesetting math: 100%

1
2
3 def Dijkstra(M, debut):
4 """ Dijkstra(M, debut)-> list
5 entrees : M, liste de listes, matrice d'adjacence du graphe
6 : debut, entier, numero du sommet de depart
7 sortie : d, liste des distances les plus courtes entre debut et tous le:
8 win
9 n = len(M)
10 S a visiter = [i for i in range(n)] # contient lLes sommets encore a visiter
11
12 d = [infini for sommet in range(n)]
13 d[debut] = ©
14 while len(S_a_visiter) != 0: # Calcul des distances minimales
15
16 s _mini = sommet mini(S_a visiter, d)
17
18 S a visiter = [i for 1 in S_a visiter if i != s mini]
19 for s2 in S_a visiter:
20 d[s2] = min(d[s2], d[s_mini] + M[s_mini][s2])
21 return d
22 print(Dijkstra(M2, 0))
23 #[o, 9, 5, 2, 19]
24 print(Dijkstra(M2, 1))
25 #[9, 0, 4, 7, 10]
26
27 # Pour renvoyer un chemin réalisant la distance minimale entre le sommet debut
28 # sommet donné, il faudrait a chaque étape retenir lLe prédécesseur d'un sommet,
29 # le dernier sommet a partir duquel la mise a jour de d a été faite.
30 # On reconstruit alors lLe chemin a partir du sommet final en prenant a chaque é:
31 # prédécesseur.
32
33 def Dijkstra_avec_chemin(M, debut):
34 """ Dijkstra(M, debut)-> list
35 entrees : M, liste de listes, matrice d'adjacence du graphe
36 : debut, entier, numero du sommet de depart
37 sorties : d, liste des distances les plus courtes entre debut et tous Il¢
38 chemin, liste de liste de chemins
39 n
40 n = len(M)
41 S a visiter = [i for i in range(n)] # contient lLes sommets encore a visiter
42 d = [infini for sommet in range(n)]
43 predecesseur = [debut for _ in range(n)]
44 d[debut] = ©
45
46 while S_a_visiter != []: # Calcul des distances minimales avec prédécesseur:
47 s_mini = sommet_mini(S_a_visiter, d) #s1 dans L 'énoncé
48 S a visiter = [i for 1 in S_a visiter if i != s mini]
49 for s2 in S_a visiter:
50 distance = d[s_mini] + M[s_mini][s2]
51 if distance < d[s2]:
52 d[s2] = distance
53 predecesseur[s2] = s_mini
54
55 chemin = [[] for _ in range(n)] # Construction des chemins minimaux a reboui
56 for sommet in range(n):
57 if d[sommet] != infini: # S'il y a un chemin !
58 precedent = sommet
59 chemin[sommet].append(precedent)
60 while precedent != debut:
61 precedent = predecesseur[precedent]
62 chemin[sommet].append(precedent)

63 return d, chemin # lLes chemins sont a L'envers : de la fin au début.
64 print(Dijkstra_avec_chemin(M2, 9))
65 #([0, 9, 5, 2, 19], [[e], [1, 2, 3, 6], [2, 3, @], [3, 6], [4, 1, 2, 3, @]])

J J J) 1@]
0) 9) 5) 2) 19]) [[0]) [1) 2) 3) 0]) [2J 3) @]J [3J 0]) [4) 1J 2) 3J @]])

Typesetting math: 100%

