
genereDico

genereMatrice

Entrée[17]: def genereDico(L):
""" genereDico(L: list) -> dict

 entrée : L, liste correspondant la liste d'adjacence du graphe
 sortie : dico, dictionnaire correspondant au dictionnaire d'adjacence du graphe
 """

dico={}
for i in range(len(L)) :

dico[i] = []
for j in range(len(L[i])):

dico[i].append(L[i][j])
return dico

def genereMatrice(L):
""" genereDico(L: list) -> list

 entrée : L, liste correspondant la liste d'adjacence du graphe
 sortie : mat, liste de listes, correspondant a la matrice d'adjacence du graphe
 """

n = len(L)
mat=[[0]*n]*n
mat = [[0 for j in range(n)] for i in range(n)]
print(mat)
for i in range(len(L)) :

for val in L[i]:
mat[i][val] = 1

return mat

L: liste d'adjacence du graphe d'exemple
L = [[1], [2, 0], [1], [6, 4, 5], [7, 3], [3], [3], [4]]
print(genereDico(L))
{0: [1], 1: [2, 0], 2: [1], 3: [6, 4, 5], 4: [7, 3], 5: [3], 6: [3], 7: [4]}
print(genereMatrice(L))
[[0, 1, 0, 0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

parcourir parcourir_voisins

parcourir_voisins

{0: [1], 1: [2, 0], 2: [1], 3: [6, 4, 5], 4: [7, 3], 5: [3], 6: [3], 7: [4]}
[[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0,
0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0,
0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0]]
[[0, 1, 0, 0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0,
0, 0, 0, 1, 1, 1, 0], [0, 0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0,
1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0]]

parcourir(L)
 Pour chaque sommet faire
 Si le sommet n'est pas marqué comme visité alors
 parcourir_voisins(L,sommet)
 finsi
 finpour

avec parcourir_voisins pouvant être définie de 2 manières : récursive ou itérative
Version récursive :
parcourir_voisins(L, sommet)
 Marquer le sommet comme visité
 Traiter le sommet
 Pour chaque voisin du sommet faire
 Si le voisin n'est pas marqué comme visité alors
 parcourir_voisins(L,voisin)
 finsi
 finpour

Version avec une pile :
parcourir_voisins(L,sommet)
 Créer une pile
 Marquer le sommet comme visité
 Empiler le sommet
 Tant que la pile n'est pas vide faire
 Dépiler un sommet
 Traiter le sommet
 Pour chaque voisin du sommet faire
 Si le voisin n'est pas marqué comme visité alors
 Marquer le voisin comme visité
 Empiler le voisin
 finsi
 finpour
 fintantque

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

parcours_voisins_rec(L, sommet, visite, parcours)

parcours_voisins_pile(L, sommet, visite, parcours)

L

sommet

visite visite[sommet] True

parcours

parcourir(L, fonctionParcours = parcours_voisins_rec)

L

fonctionParcours parcours_voisins_rec

parcours_voisins_pile

fonctionParcours parcours

Entrée[19]: # TP graphes

Parcours en profondeur
def parcours_voisins_rec(L, sommet, visite, parcours):

"""parcours récursif des voisins non visités de sommet"""
""" parcours_voisins_rec(L : list, sommet: int, visite: list, parcours: list)

 entrees :L : liste, liste d'adjacence du graphe
 sommet : entier, Numero du sommet dont on part
 visite : liste de booléens qui indique pour chaque sommet(indice)
 s'il a déjà été visité (True ou False), modifiée par effet de bord
 parcours : liste des sommets visités (dans l'ordre de la visite), modifiée par
 """

visite[sommet] = True
parcours.append(sommet)
lesVoisins = L[sommet]
for voisin in lesVoisins :

if not visite[voisin]:
parcours_voisins_rec(L,voisin, visite, parcours)

"""Parcours en profondeur itératif"""
from collections import deque
def parcours_voisins_pile(L, sommet, visite, parcours):

"""parcours des voisins non visités de sommet à l'aide d'une pile"""
pile = [sommet]
visite[sommet] = True
while len(pile) != 0:

sommet1 = pile.pop()
parcours.append(sommet1)
for voisin in L[sommet1]:

if not visite[voisin]:
visite[voisin] = True
pile.append(voisin)

version iterative en utilisant les deque en python
from collections import deque
def parcours_voisins_pile(L, sommet, visite, parcours):

"""parcours des voisins non visités de sommet à l'aide d'une pile"""
pile = deque([sommet])
visite[sommet] = True
while len(pile) != 0:

sommet1 = pile.pop()
parcours.append(sommet1)
lesVoisins = L[sommet1]
for voisin in lesVoisins:

if not visite[voisin]:
visite[voisin] = True
pile.append(voisin)

def parcourir(L, fonctionParcours = parcours_voisins_rec):
"""Parcours en profondeur des sommets du graphe"""
""" parcourir(L : list)-> list

 entrees : L, liste, liste d'adjacence du graphe
 : fonctionParcours, nom de la fonction à appeler pour le parcours en pofondeur
 sortie : parcours, liste des sommets visités (dans l'ordre de la visite), modifiée par
 """

n = len(L)
visite = [False for _ in range(n)] # permet de savoir si un sommet a été visité
parcours = [] # permet de garder les sommets dans l'ordre de parcours
for sommet in range(n):

if not visite[sommet]:
fonctionParcours(L, sommet, visite, parcours)

return parcours

L = [[1], [2, 0], [1], [6, 4, 5], [7, 3], [3], [3], [4]]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

print(parcourir(L))
ou
print(parcourir(L, parcours_voisins_rec))
[0, 1, 2, 3, 6, 4, 7, 5]

print(parcourir(L, parcours_voisins_pile))
[0, 1, 2, 3, 5, 4, 7, 6]

66
67
68
69
70
71
72
73

parcours_voisins_file

parcourir

Entrée[20]: ## Parcours en largeur

from collections import deque
def parcours_voisins_file(L,sommet, visite, parcours):

"""parcours des voisins non visités de sommet à l'aide d'une pile"""
file = deque([sommet])
while len(file) != 0:

sommet = file.pop()
if not visite[sommet] :

visite[sommet] = True
parcours.append(sommet)
for voisin in L[sommet]:

if not visite[voisin]:
visite[sommet] = True
file.appendleft(voisin)

def parcourir(L, fonctionParcours = parcours_voisins_rec):
"""Parcours en profondeur des sommets du graphe"""
""" parcourir(L : list)-> list

 entrees : L, liste, liste d'adjacence du graphe
 : fonctionParcours, nom de la fonction à appeler pour le parcours en pofondeur
 sortie : parcours, liste des sommets visités (dans l'ordre de la visite), modifié par
 """

n = len(L)
visite = [False for _ in range(n)] # permet de savoir si un sommet a été visité
parcours = [] # permet de garder les sommets dans l'ordre de parcours

for sommet in range(n):
if not visite[sommet]:

fonctionParcours(L, sommet, visite, parcours)
return parcours

L = [[1], [2, 0], [1], [6, 4, 5], [7, 3], [3], [3], [4]]
print(parcourir(L, parcours_voisins_file))
[0, 1, 2, 3, 6, 4, 5, 7]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

[0, 1, 2, 3, 6, 4, 7, 5]
[0, 1, 2, 3, 5, 4, 7, 6]

[0, 1, 2, 3, 6, 4, 5, 7]

parcours_voisins

L

CC CC[sommet]

numero_CC

parcours_voisins(L, sommet, CC, numero_CC)

listeComposantesConnexes

parcourir parcours_voisins

L CC

Entrée[22]: ## Composantes connexes

Liste des composantes connexes récursif
def parcours_voisins(L, sommet, CC, numero_CC):

""" parcours_voisins(L : list, sommet: int, CC: list, numero_CC:int):
 entrees :L : liste, liste d'adjacence du graphe
 sommet : entier, Numero du sommet dont on part
 CC : liste initialisée avec des valeurs -1,
 telle que CC[sommet] est le numéro de la composante connexe à laquell
 modifiée par effet de bord
 numero_CC : int, numéro de la composante connexe
 """

CC[sommet] = numero_CC
for voisin in L[sommet]:

if CC[voisin] < 0:
parcours_voisins(voisin, CC, numero_CC)

def listeComposantesConnexes(L):
""" listeComposantesConnexes(L : list) -> list, int:

 entrees :L : liste, liste d'adjacence du graphe
 sorties :CC : liste initialisée avec des valeurs -1,
 telle que CC[sommet] est le numéro de la composante connexe à laquell
 int, nombre de composantes connexes du graphe
 """

n = len(L)
CC = [-1 for _ in range(n)]
numero_CC = -1
for sommet in range(n):

if CC[sommet] < 0:
numero_CC += 1
parcours_voisins(L,sommet, CC, numero_CC)

return CC, numero_CC + 1

Liste des composantes connexes avec pile
def parcours_voisins(L,sommet, CC, numero_CC):

pile = [sommet]
while pile != []:

sommet = pile.pop()
CC[sommet] = numero_CC
for voisin in L[sommet]:

if CC[voisin] < 0:
pile.append(voisin)

def listeComposantesConnexesv2(L):
n = len(L)
CC = [-1 for _ in range(n)]
numero_CC = -1
for sommet in range(n):

if CC[sommet] < 0:
numero_CC += 1
parcours_voisins(L,sommet, CC, numero_CC)

return CC, numero_CC + 1

#Tests sur le graphe du début de TP
CC = [-1 for _ in range(len(L))]
parcours_voisins(L, 1, CC, 0)
print(CC) # [0, 0, 0, -1, -1, -1, -1, -1]

parcours_voisins(L, 2, CC, 1)
print(CC) # [0, 0, 0, 1, 1, 1, 1, 1]

print(listeComposantesConnexesv2(L))
([0, 0, 0, 1, 1, 1, 1, 1], 2)

print(listeComposantesConnexes(L))
([0, 0, 0, 1, 1, 1, 1, 1], 2)

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

66
67

compte_ComposantesConnexes(CC)

CC

Entrée[]: def compte_ComposantesConnexes(L):
""" compte_ComposantesConnexes(L : list):

 entrees :L : liste, liste d'adjacence du graphe
 """

CC, nb_CC = listeComposantesConnexes(L)
tailleCC = [0 for _ in range(nb_CC)]
for i in CC:

tailleCC[i] += 1
compte = [0 for _ in range(max(tailleCC) + 1)]

for n in tailleCC:
compte[n] += 1

if compte[1] != 0:
s = 's' if compte[1] != 1 else ''
print('{0} sommet{1} isolé{1}.'.format(compte[1], s))

for i in range(2, len(compte)):
if compte[i] != 0:

s = 's' if compte[i] > 1 else ''
print('{0} composante{1} connexe{1} de taille {2}.'.format(compte[i],

compte_ComposantesConnexes(L)
1 composante connexe de taille 3.
1 composante connexe de taille 5.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

graphe_aleatoire(n, m)

[0, 0, 0, -1, -1, -1, -1, -1]
[0, 0, 1, -1, -1, -1, -1, -1]
([0, 0, 0, 1, 1, 1, 1, 1], 2)
([0, 0, 0, 1, 1, 1, 1, 1], 2)

Entrée[23]: # graphe aléatoire

from random import randint, seed

def graphe_aleatoire(n, m):
"""renvoie la liste d'adjacence d'un graphe aléatoire à

n sommets et m arêtes."""
seed()
L = [[] for _ in range(n)]
nb_aretes = 0
while nb_aretes < m:

s1 = randint(0, n - 1)
s2 = randint(0, n - 1)
if s1 != s2 and s2 not in L[s1]:

nb_aretes += 1
L[s1].append(s2)
L[s2].append(s1)

return L
d = 10000
compte_ComposantesConnexes(graphe_aleatoire(d, d+10))
"""
1357 sommets isolés.
179 composantes connexes de taille 2.
50 composantes connexes de taille 3.
18 composantes connexes de taille 4.
10 composantes connexes de taille 5.
4 composantes connexes de taille 6.
3 composantes connexes de taille 8.
1 composante connexe de taille 9.
1 composante connexe de taille 7956.
"""

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

degres(M)

Traceback (most recent call last):
 File "<input>", line 20, in <module>
NameError: name 'compte_ComposantesConnexes' is not defined

Entrée[26]: def degres(M):
""" degres(M:list)->list

 renvoie la liste des degrés des sommets du graphe dont M est liste d'adjacence.
 entree : M, liste de listes, correspondant a la matrice d'adjacence du graphe
 sortie : liste correspondant aux degrés de chaque sommet du graphe
 """

n = len(M)
return [sum(M[i][j] for j in range(n)) for i in range(n)]

Tests
M = [[0,1,0,0,0,0,0,0],
 [1,0,1,0,0,0,0,0],
 [0,1,0,0,0,0,0,0],
 [0,0,0,0,1,1,1,0],
 [0,0,0,1,0,0,0,1],
 [0,0,0,1,0,0,0,0],
 [0,0,0,1,0,0,0,0],
 [0,0,0,0,1,0,0,0]]

print(degres(M))
[1, 2, 1, 3, 2, 1, 1, 1]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

ordre_sommets(M)

[1, 2, 1, 3, 2, 1, 1, 1]

Entrée[28]: def ordre_sommets(M):
""" ordre_sommets(M:list)->list

 renvoie la liste des sommets triée par ordre croissant de degré.
 entree : M, liste de listes, correspondant a la matrice d'adjacence du graphe
 sortie : liste des sommets du graphe triée par ordre décroissant de degré
 """ deg = degres(M)

n = len(M)

Tri rapide en place : on n'a pas choisi la facilité !
def partition(T, debut, fin):

"partitionnement pour tri rapide"""
pivot = T[debut]
finpp = debut
for i in range(debut + 1, fin):

if deg[T[i]] > deg[pivot]:
finpp += 1
T[finpp], T[i] = T[i], T[finpp]

T[debut], T[finpp] = T[finpp], T[debut]
return finpp

def tri_rapide(T, debut, fin):
"Tri en place de T[debut:fin] par ordre décroissant de degrés"
if debut < fin:

finpp = partition(T, debut, fin)
tri_rapide(T, debut, finpp)
tri_rapide(T, finpp + 1, fin)

sommets = [i for i in range(n)]
tri_rapide(sommets, 0, len(sommets))
return sommets

Alternative avec sorted :
def ordre_sommets(M):

"renvoie la liste des sommets triée par ordre croissant de degré."
n, deg = len(M), degres(M)
return sorted([i for i in range(n)], key=lambda x: deg[x], reverse=True)

Tests
print(ordre_sommets(M))
[3, 1, 4, 0, 2, 5, 6, 7]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

couleur

couleur

couleur_voisins(M, sommet, couleur)

sommet

 File "<input>", line 6
 """ ordre_sommets(M:list)->list
 renvoie la liste des sommets triée par ordre croissant de degré.
 entree : M, liste de listes, correspondant a la matrice d'adjacence du grap
he
 sortie : liste des sommets du graphe triée par ordre décroissant de degré
 """ deg = degres(M)
 ^^^
SyntaxError: invalid syntax

Entrée[37]: def couleur_voisins(M, sommet, couleur):
""" couleur_voisins(M: list, sommet:int, couleur:list)->list

 renvoie une liste de n booléens telle que l’élément
 d’indice i est à True si au moins un des voisins de sommet a la
 couleur i, et à False dans le cas contraire.
 entrees : M, liste de listes, correspondant a la matrice d'adjacence du graphe
 : sommet, entier, numero du sommet
 : couleur, liste des couleurs des sommets. La couleur est a -1 si le sommet n'est
 sortie : liste_couleurs, liste de booleens
 """

n = len(M)
booléen pour savoir si une couleur est utilisée par un voisin
liste_couleur = [False for _ in range(n)]
for voisin in range(n):

if M[sommet][voisin] == 1 and couleur[voisin] != -1:
liste_couleur[couleur[voisin]] = True

return liste_couleur

Tests
couleur = [-1]*len(M)
print(couleur_voisins(M, 0, couleur))
#[False, False, False, False, False, False, False, False]
couleur[1]=2
print(couleur_voisins(M, 0, couleur))
#[False, False, False, False, False, False, False, False]
print(couleur_voisins(M, 5, couleur))
#[False, True, False, False, False, False, False, False]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

[False, False, False, False, False, False, False, False]
[False, False, True, False, False, False, False, False]
[False, False, False, False, False, False, False, False]

Entrée[]: def color_glouton(M):
n = len(M)
couleur = [-1 for _ in range(n)]
sommets = ordre_sommets(M) #tri des sommets par ordre décroissant

for s in sommets:
liste_couleur = couleur_voisins(M, s, couleur)

Détermination de la couleur minimale non utilisée
mini = 0
while liste_couleur[mini]:

mini +=1
couleur[s] = mini

return couleur

print(color_glouton(M))
[1, 0, 1, 0, 1, 1, 1, 0]

def K(n):
""""Renvoie le graphe complet K_n"""
M = [[1 for i in range(n)] for j in range(n)]
for i in range(n):

M[i][i] = 0
return M

print(color_glouton(K(10)))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

∞

∑

∞

⩽ ⩽ ⩽

∈
←

sommet_mini(S_a_visiter, d) S_a_visiter

d

Entrée[4]: import numpy as np
infini = np.inf

M2 = [[infini, 20, infini, 2, 100],
 [20, infini, 4, infini, 10],
 [infini, 4, infini, 3, infini],
 [2, infini, 3, infini, infini],
 [100, 10, infini, infini, infini]]

def sommet_mini(S2, d):

1
2
3
4
5
6
7
8
9

10
11

Entrée[14]: ## Dijkstra

infini = float('inf')

M2 = [[infini, 20, infini, 2, 100],
 [20, infini, 4, infini, 10],
 [infini, 4, infini, 3, infini],
 [2, infini, 3, infini, infini],
 [100, 10, infini, infini, infini]]

def sommet_mini(S2, d):
""" sommet_mini(S2, d) -> int

 entree : S2, liste de numeros des sommets à visiter
 : d, liste de distances
 sortie : mini, numero du sommet pour lequel la distane est minimale
 """

mini = S2[0]
for s in S2:

if d[s] < d[mini]:
mini = s

return mini

import numpy as np
S_a_visiter=[1, 2, 4]
d=[0, 20, 5, 2, 100]

print(sommet_mini(S_a_visiter, d)) #2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Dijkstra(M, depart)

depart

Entrée[6]: def Dijkstra(M debut):1

 File "<input>", line 10
 def sommet_mini(S2, d):
 ^
SyntaxError: incomplete input

2

 File "<input>", line 1
 def Dijkstra(M, debut):
 ^
SyntaxError: incomplete input

Entrée[16]:

def Dijkstra(M, debut):
""" Dijkstra(M, debut)-> list

 entrees : M, liste de listes, matrice d'adjacence du graphe
 : debut, entier, numero du sommet de depart
 sortie : d, liste des distances les plus courtes entre debut et tous les sommets du graphe
 """

n = len(M)
S_a_visiter = [i for i in range(n)] # contient les sommets encore à visiter

d = [infini for sommet in range(n)]
d[debut] = 0
while len(S_a_visiter) != 0: # Calcul des distances minimales

s_mini = sommet_mini(S_a_visiter, d)

S_a_visiter = [i for i in S_a_visiter if i != s_mini]
for s2 in S_a_visiter:

d[s2] = min(d[s2], d[s_mini] + M[s_mini][s2])
return d

print(Dijkstra(M2, 0))
#[0, 9, 5, 2, 19]
print(Dijkstra(M2, 1))
#[9, 0, 4, 7, 10]

Pour renvoyer un chemin réalisant la distance minimale entre le sommet debut et un
sommet donné, il faudrait à chaque étape retenir le prédécesseur d'un sommet, c'est-à-dire
le dernier sommet à partir duquel la mise à jour de d a été faite.
On reconstruit alors le chemin à partir du sommet final en prenant à chaque étape son
prédécesseur.

def Dijkstra_avec_chemin(M, debut):
""" Dijkstra(M, debut)-> list

 entrees : M, liste de listes, matrice d'adjacence du graphe
 : debut, entier, numero du sommet de depart
 sorties : d, liste des distances les plus courtes entre debut et tous les sommets du graph
 : chemin, liste de liste de chemins
 """

n = len(M)
S_a_visiter = [i for i in range(n)] # contient les sommets encore à visiter : S2
d = [infini for sommet in range(n)]
predecesseur = [debut for _ in range(n)]
d[debut] = 0

while S_a_visiter != []: # Calcul des distances minimales avec prédécesseurs
s_mini = sommet_mini(S_a_visiter, d) #s1 dans l'énoncé
S_a_visiter = [i for i in S_a_visiter if i != s_mini]
for s2 in S_a_visiter:

distance = d[s_mini] + M[s_mini][s2]
if distance < d[s2]:

d[s2] = distance
predecesseur[s2] = s_mini

chemin = [[] for _ in range(n)] # Construction des chemins minimaux à rebours
for sommet in range(n):

if d[sommet] != infini: # S'il y a un chemin !
precedent = sommet
chemin[sommet].append(precedent)
while precedent != debut:

precedent = predecesseur[precedent]
chemin[sommet].append(precedent)

return d, chemin # les chemins sont à l'envers : de la fin au début.
print(Dijkstra_avec_chemin(M2, 0))
#([0, 9, 5, 2, 19], [[0], [1, 2, 3, 0], [2, 3, 0], [3, 0], [4, 1, 2, 3, 0]])

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

[0, 9, 5, 2, 19]
[9, 0, 4, 7, 10]
([0, 9, 5, 2, 19], [[0], [1, 2, 3, 0], [2, 3, 0], [3, 0], [4, 1, 2, 3, 0]])

