
Piles et Files d’attentes

1 Motivation : problèmes liés à la notion de pile ou de file d’attente

(i) Un programme informatique dédié à l’édition, que sa nature soit de composer du code informatique, un
texte littéraire, une pièce de musique nécessite souvent de pouvoir annuler des modifications et de revenir à
un état précédent du document édité

(ii) Une imprimante connectée en réseau reçoit de plusieurs ordinateurs des tâches d’impression, et chaque
document à imprimer se compose de plusieurs pages à imprimer. Comment faire pour que les documents
soient imprimés dans l’ordre où ils ont été transmis à l’imprimante ?

(iii) Un programme structuré est composé de nombreux blocs parmi lesquels des fonctions qui s’appellent les unes
les autres (et même, on le verra des fonctions qui peuvent s’appeler elles-mêmes), par exemple le programme
principal fait appel à une première fonction, qui à son tour en invoque une seconde, et la seconde une
troisième. Lorsque la dernière fonction a terminé son travail et donné sa réponse, l’exécution reprend dans
le bloc depuis lequel cette fonction a été invoquée, à la suite de l’instruction réalisant cet appel... Comme il
peut y avoir d’assez nombreux appels imbriqués, comment gérer l’exécution du code dans ces conditions ?

(iv) Vous cherchez à résoudre un puzzle, comme par exemple un sudoku. Il y a des éléments qui sont certains et
que l’on peut compléter sans risque d’erreur, mais il arrive que des positions restent à compléter, et plusieurs
possibilités s’offrent à nous, et aucun raisonnement simple ne permet d’affirmer en toute certitude que la
bonne valeur est celle-ci ou celle-là. Une solution simple consiste à essayer une par une les valeurs possibles,
et à garder trace de la position du puzzle avant complétion et de la valeur proposée pour, en cas d’échec,
revenir en arrière (backtracking) et en tester une autre.

2 Définitions

Définition 2.1 Une pile (stack pour les anglo-saxons) est une structure permettant de contenir un certain nombre
de données, mais qui ne permet l’ajout et le retrait de données que de manière assez stricte : les données retirées
le sont dans l’ordre inverse des ajouts. Les anglo-saxons parlent du principe LIFO (last-in-first-out).

Deux fonctions essentielles régissent l’utilisation d’une pile :
• push(object) qui prend un objet en argument et le place sur la pile
• pop() qui retourne le dernier objet empilé et le retire de la pile

Les fonctions suivantes sont moins importantes, mais peuvent également être implémentées :
• isEmpty() qui retourne le booléen True ou False selon bien entendu que la pile soit ou non vide
• peek() qui, sans retirer le dernier objet empilé, retourne celui-ci
• size() qui retourne le nombre d’éléments présents sur la pile.

Bien entendu, une tentative d’extraction d’un objet d’une pile vide se soldera par une erreur (qui sauf traitement
de celle-ci conduira à faire planter le programme...)

Une représentation commode d’une pile pourrait être la suivante :

← prochain objet
Objet 3 ← sera retiré et retourné par pop()
Objet 2
Objet 1

Comme un empilement de livres, on retire aisément le dernier ajouté, tout en haut de la pile, et on en ajoute un
par-dessus le dernier tout aussi facilement.

Définition 2.2 Une file d’attente (queue pour les anglo-saxons) comme une pile est une structure permettant
également de contenir un certain nombre de données mais dont les données sont cette fois-ci retirées dans le même
ordre que les ajouts.

Comme son nom l’indique, une file d’attente modélise par exemple l’ensemble des élèves de Kju attendant
leur tour au self (on oublie bien sûr les VIP qui passent sur le côté !) et les anglos-saxons parlent cette fois du
principe FIFO (first-in-first-out).

Les fonctions les plus importantes qui régissent le fonctionnement d’une file d’attente sont :
• enqueue(object) qui ajoute un objet à la file d’attente
• dequeue() qui retourne et retire un objet de la file d’attente : le plus anciennement ajouté parmi ceux

restants.
et comme pour les piles, on implémente souvent aussi :

• isEmpty() qui retourne True ou False selon que la file d’attente est ou n’est pas vide
• size() qui retourne le nombre d’objets contenus dans la file d’attente.

Exercice 1 Reprendre les quatre exemples décrits en préambule pour décider laquelle de ces deux structures, piles
ou file d’attente, répond au problème posé.

3 Implémentation : classes squelettes. Un peu de POO

L’utilisateur d’une implémentation d’une pile ou d’une file d’attente n’a pas à savoir comment cette structure
est implémentée. Il lui faut juste savoir quelles sont les fonctions accessibles et la syntaxe, mais ce qui se passe en
coulisses est sans importance pour l’utilisateur. L’utilisation de classes est assez appropriée à ce genre de problème,
et en voici le squelette pour les piles :

class stack:
""" Une pile """
def __init__(self):

le code : ici on initialise la ou les variables dont on a besoin pour l’objet créé.

def push(self, item):
""" empile l’objet donné en paramètre """
le code ici

def pop(self):
""" dépile et retourne le dernier objet ajouté """
le code ici

def peek(self):
""" retourne le dernier objet ajouté (sans le retirer)"""
le code ici

def isEmpty(self):
""" comme son nom l’indique... """
le code ici

def size(self):
""" la taille, en nombre d’objets empilés """
le code ici

Bien sûr, le code présenté est tel quel non seulement incomplet, mais erroné, les fonctions étant vides (ce qui est
interdit...)

Une fois le code correctement complété, et exécuté dans le shell courant afin de rendre accessible cet objet,
on l’utilise ainsi : p = stack() crée et initialise une pile, que la variable p permettra de référencer.

Pour ajouter par exemple l’entier 1 à la pile, on écrira : p.push(1)

Pour dépiler le dernier objet, on écrira bien sûr p.pop()

3.1 Quelques éléments quant à la syntaxe des classes

La méthode __init__() n’est jamais appelée directement, mais elle l’est automatiquement à chaque fois
qu’un nouvel objet est créé. C’est alors le moment idéal pour initialiser des variables. Par exemple, on pourrait

décider que les valeurs que contiendra la pile formeront un tableau (enfin, une liste en python...) qu’on nommera
items, et pour ce faire on écrirait :

def __init__(self):
self.items = []

self fait référence à l’objet qui est défini (et dans les autres méthodes, à l’objet duquel on invoque une méthode).
Une fois la pile p créée par la commande p = stack(), alors sa variable d’instance items est directement accessible
(mais ce n’est a priori pas souhaitable d’y accéder ainsi) par p.items

Au sein de chacune des autres méthodes push, pop, peek..., on accède à la variable items de l’objet
concerné en écrivant : self.items.

Enfin, la présence un peu surprenante au début de self dans les définitions de chacune des méthodes de la
classe stack est ce qui permet de traduire un appel tel que p.push(1) en stack.push(p, 1) (les deux commandes
sont équivalentes, mais la première est tout de même plus courte et lisible !)

Remarque 3.1 Certains langages utilisant la programmation orientée objets permettent l’encapsulation d’attri-
buts (variables) et de méthodes (fonctions) en ne permettant leur accès que depuis l’objet lui-même (les méthodes
qui en font partie sont donc les seules à pouvoir lire et écrire des valeurs pour ces attributs, ou à faire appel à ces
méthodes dites privées) voire ses descendants (héritage).

Rien de tel n’existe avec python, mais la coutume est de préfixer d’un caractère de soulignement _ le nom
d’une variable ou d’une méthode que l’on considère comme privée. On peut rendre les choses un peu plus corsées
en préfixant le nom d’une variable ou d’une méthode de deux caractères de soulignement : __ qui conduit à ce
que le nom depuis l’extérieur soit modifié en _nomClasse__nomVar mais dans les faits, même ainsi, les variables
restent accessibles hors de la définition de la classe.

4 Application au parcours de graphes

Un graphe est la donnée d’un ensemble de noeuds connectés les uns aux autres par des arêtes, lesquelles
peuvent être, ou non, orientées. D’un graphe dont les arêtes sont orientées, on parle de graphe orienté, et bien sûr
de graphe non orienté si les arêtes ne sont pas orientées. L’exemple suivant est celui d’un graphe orienté :

0

1

2 63

4

7

8

5

Un algorithme de parcours de graphe cherche à déterminer à partir d’un noeud donné l’ensemble des noeuds
que l’on peut atteindre en un certain nombre d’arêtes. Par exemple, dans l’exemple ci-dessus, depuis le noeud
portant le numéro 0, les noeuds atteignables sont les noeuds 1, 2, 3, 4, 6, 7 et 8, mais pas le noeud 5, duquel on ne
peut atteindre que les noeuds 5, 1 et 6.

L’utilisation d’une pile ou d’une file d’attente conduit à deux algorithmes classiques de parcours de graphe.

4.1 Avec une file d’attente : parcours en largeur

N.B. : l’algorithme décrit ici est souvent cité dans la littérature anglo-saxone sous le sigle BFS (breadth first
search).

Etude d’un exemple : supposons que l’on souhaite parcourir le graphe précédent à partir du noeud numéroté
0.

On initialise une file d’attente, et on empile l’étiquette 0 du noeud, et on marque également le noeud 0
comme visité pour éviter d’y repasser plus tard (la question peut se poser en présence de cycle afin d’éviter que
l’algorithme ne tourne en rond !)

Commence une boucle conditionnelle : tant que la file d’attente n’est pas vide, on extrait un élément, on
observe quels sont les noeuds qu’on peut atteindre depuis celui-ci et qui n’ont pas été visités : on les marque
comme visités et on les ajoute à la file d’attente.

Dans le cas précédent : après avoir extrait 0, on ajoute les étiquettes 1 et 2 qui sont les numéros des noeuds
que l’on peut atteindre depuis le noeud 0, et on marque comme visités ces deux noeuds.

La file prend donc la forme : 2 1 (on ajoute à gauche et on retire à droite)

On extrait un élément, qui est alors 1, et on ajoute l’étiquette 6 (que l’on marque comme visité) et la file
devient : 6 2

Puis on extrait 2 et on rajoute 3 et 4 (et on marque les noeuds correspondants comme visités)

La file est maintenant constituée de : 4 3 6

On extrait 6, puis 3 puis 4 et alors seulement on rajoute 7 et 8 et la file est alors 8 7

On extrait enfin 7 et 8. A noter que le noeud 6 ayant été visité n’est pas rajouté à la file qui est alors vide,
et le parcours s’achève.

Les noeuds ont ainsi été obtenus dans l’ordre suivant : 0, 1, 2, 6, 3, 4, 7, 8.

Une propriété importante d’un parcours en largeur est que les noeuds sont obtenus selon la distance minimale
au noeud initial : après le noeud initial sont obtenus les noeuds voisins de celui-ci, puis tous les noeuds qu’on peut
atteindre par un chemin de longueur 2 et ainsi de suite.

Exemple de code (les graphes que l’on considère ont des noeuds numérotés à partir de 0 et sont représentés
par des listes de listes, ainsi G[i] est la liste des noeuds voisins du noeud i.

Le graphe présenté précédemment est donc donné par la liste :
[[1, 2], [6], [3, 4], [], [7, 8], [1], [], [], [6]]

def bfs(G, node):
L = []
visited = {node}
Q = queue()
Q.enqueue(node)
while not Q.isEmpty():

n = Q.dequeue()
L.append(n)
for w in G[n]:

if w not in visited:
Q.enqueue(w)
visited.add(w)

return L

4.2 Parcours en profondeur

L’idée d’un parcours en profondeur de graphe est, à partir d’un noeud initial, de se déplacer en suivant les
arêtes du graphe jusqu’à ou bien arriver à une impasse, ou bien devoir repasser sur un noeud déjà visité. Parvenant
à une telle situation, on revient en arrière jusqu’à pouvoir atteindre un nouveau noeud à partir d’un noeud déjà

visité et d’un arête non traversée jusque-là.

Il n’y a pas unicité d’un parcours en profondeur d’un graphe, à moins de s’imposer par exemple de se diriger
vers le noeud voisin d’un noeud donné qui a la plus petite ou la plus grande étiquette...

Pour le graphe précédent, les parcours suivants répondent à la définition d’un parcours en profondeur :
• 0, 1, 6, 2, 3, 4, 7, 8
• 0, 2, 4, 8, 6, 7, 3, 1
• 0, 2, 3, 4, 8, 6, 7, 1
Comme le retour en arrière n’est autre que le backtracking qu’on évoquait plus tôt, on se doute qu’une

pile est judicieuse pour le permettre, mais il faut faire un peu attention... Si on modifie le code précédent pour
remplacer la file d’attente par une pile, on obtient ceci :

def stackTraversal(G, node):
L = []
visited = {node}
S = stack()
S.push(node)
while not S.isEmpty():

n = S.pop()
L.append(n)
for w in G[n]:

if w not in visited:
S.push(w)
visited.add(w)

return L

Quel est l’ordre des sommets obtenu pour le graphe précédent ?

Et pour le graphe suivant, en partant toujours du sommet 0 ?

0

1 3

2 4

5

6

7

8

(On supposera que le graphe est donné par la liste :
[[1, 3], [0, 2, 4], [1, 5], [0, 4, 6], [1, 3, 5, 7], [2, 4, 8], [3, 7], [4, 6, 8], [5, 7]])

Quelles modifications effectuer pour obtenir un vrai parcours en profondeur de ce graphe ?

	Motivation : problèmes liés à la notion de pile ou de file d'attente
	Définitions
	Implémentation : classes squelettes. Un peu de POO
	Quelques éléments quant à la syntaxe des classes

	Application au parcours de graphes
	Avec une file d'attente : parcours en largeur
	Parcours en profondeur

