Enveloppes convexes

Etant donnée une liste de points (ils seront a coordonnées entiéres dans ce qui suit, mais cela n’a pas d’importance),
ou cherche un polygone convexe qui "contient" tous les points de la liste proposée :

La liste de points sera modélisée par une liste de tuples formés de deux entiers (il pourrait aussi s’agir d’une
liste de deux entiers, cela n’a guére d’importance ici)

et
on prendra celui qui est le plus bas, puis on réordonne tous les autres points selon 'angle (i, PM). Si plusieurs

points sont alignés avec P, on ne garde que le plus éloigné de P :

La démarche proposée est la suivante : on détermine le point P situé le plus & gauche. S’il y en a plusieurs,
1

On a alors obtenu des points P, My, ..., M,. Les deux premiers P et M font forcément partie du ’enveloppe
convexe recherchée et on les ajoute a la liste qui construit notre polygone convexe. Pour chaque nouveau point,
M;, on regarde si la configuration formée avec les deux derniers points ajoutés tourne dans le sens positif ou non...
Si oui, on ajoute M;, sinon, on retire le dernier point ajouté et on ajoute M;.

Dans l'exemple présenté : on part de [P, My], puis on ajoute M, puis on "remplace" M; par Ms, on ajoute
Ms, My. On remplace My par M5, on ajoute Mg qu’on remplace aussitot par Mz, on ajoute Mg qu’on remplace
par My, on ajoute Mg est c’est fini...

1. Un point important est de déterminer si trois points A, B,C "tournent' dans le sens direct. Pour en
décider, on calculera le déterminant de (ﬁ,A ) dont le signe donne la réponse a notre question (nul
besoin de calculer un angle avec une arctangente par exemple)

Ecrire alors une fonction def orientation(a, b, c¢) qui associe & trois points A, B, C' connus par leurs
couples de coordonnées a, b et ¢ la valeur du produit mixte Det(AB, AC).

2. Ecrire encore une fonction def pointGauche(L) qui & une liste de points (une liste de couples, ou une
liste de listes de deux valeurs) retourne 'indice ¢ du point P d’abscisse minimale (et, le cas échéant, parmi
les points de plus petite abscisse s’il y en a plusieurs, retourne celui de plus petite ordonnée)

3. Etant donnée une liste L et une fonction comp qui satisfait aux conditions suivantes, pour tous i, j et k :
e comp(L[i], L[i]) =0
e Si comp(L[i], L[j]) >= 0 et comp(L[j]l, L[k]) >= 0, alors comp(L[i], L[k]) >= 0.
e comp(L[j], L[il) = -comp(L[il, L[j1)



On souhaite réordonner les éléments de L de telle sorte que pour tout ¢, comp(L[i], L[i+1]) >= 0.

Ecrire pour ce faire une fonction insertSort(L, comp) qui effectue ce travail en réalisant un tri par
insertion.

4. Quelle est la complexité de la fonction précédente ?

5. Ecrire une fonction prepare(L) qui, étant donnée une liste L de points, détermine le point P d’abscissg
minimale, retire celui-ci de L et réordonne les éléments restants de L de telle sorte que les angles entre ¢
et PL[i] (admettant une mesure entre —7 et T) soient en progression croissante.)

On pourra, au choix, ne retourner que le point P et trier en place ce qui reste de L (on modifie donc la
liste fournie en argument) ou bien retourner le couple (P, L) ou L' est la liste obtenue & partir de L en
retirant le point P et en triant ses éléments.

On fera bien siir appel aux fonctions précédentes.

6. Ecrire encore une fonction faitMenage(p, L) qui prend en argument un point p et une liste de points L
triée (autrement dit les valeurs de retour de prepare(L)) et qui retourne une liste de points extraite de
L, toujours triée, mais ou deux points consécutifs ne sauraient étre alignés avec p. (Lorsque deux points
consécutifs de L sont alignés avec p, on rappelle qu’on ne garde que celui qui est le plus éloigné de p)
Une fonction qui agit en temps linéaire est attendue (plutét que de modifier L en en retirant des éléments,
il vaut mieux repartir d’une liste vide et y incorporer des éléments de L...)

7. Ecrire enfin une fonction enveloppe (L) qui d’une liste de points L retourne le polygone convexe recherché.
Son premier point sera celui le plus a gauche, et il devra tourner dans le sens positif. Bien siir, on fera
appel aux fonctions précédentes.

8. Quelle est la complexité de la fonction précédente ?

9. Pour en améliorer la complexité, ou souhaite remplacer le tri par insertion par un tri fusion. Ecrire pour
ce faire deux fonctions : merge (L1, L2, comp) et mergeSort(L, comp).
Sans surprise, la premiere suppose triées les deux listes L1 et L2, et les fusionne en une liste triée L, tandis
que la seconde fait appel a la premiere et retourne les éléments de L en une liste triée.

10. Quelle devient la complexité de la fonction enveloppe (L) en ayant remplacé la fonction insertSort (L, comp)
par mergeSort (L, comp) ?

11. Compléter la fonction enveloppe (L) pour tracer & la fois le nuage de points L (on pourra utiliser scatter
de matplotlib), le polygone convexe obtenu (plot en rajoutant le point initial pour boucler le polygone...)
et également 'intérieur du polygone, avec £i11 de matplotlib (on pourra utiliser 'option alpha afin que
les points a l'intérieur du polygone restent visibles). Les illustrations sur ce sujet ont été réalisés avec
matplotlib...

12. Variante : remplacer le tri fusion par 'algorithme de tri rapide, en écrivant deux fonctions :
partition(L, a, b, p, comp) qui modifie en place L pour ses indices de a (compris) & b (non compris)
et autour du pivot p (o1 a < p < b), puis :
quickSort (L, comp) qui bien sir fait appel a la fonction précédente.

Annexe : Si vous voulez travailler sur la liste de points qui est représentée ici, vous pouvez définir la liste L
ainsi :

L = [, o, (0, B, (6, 1), (8, 7), (3, 9, (7, 11), (11, 5), (13, 5), \
12, 1), (e, 3), (17, 6), (17, 10), (12, 10)]

Voici pour référence, le résultat de prepare(L) :

o, 5, [(1, 0, (6, 1), (12, 1), (16, 3), (13, 5), (11, &), 17, 6), (8, 7), (17, 10),
(12, 10), (7, 11), (3, 9D

uand on fait "le ménage", seul (11,5) disparailt, puis 'enveloppe convexe obtenue est :
ge, p y P PP

(o, s, @, 0, (12, 1), 16, 3), 17, 6), (17, 10, (7, 11), (3, 9]



