
TP récursivité

1 Listes imbriquées

On suppose qu’une liste L peut contenir parmi ses éléments d’autres listes, qui à son tour contiennent
d’autres listes et ainsi de suite, et on souhaite obtenir une liste formée des "mêmes" éléments que la première mais
ne contenant, elle, pas de liste...

Autrement dit, de la liste [1, [2, [3, 4], [5, [6, 7]]], [8], [[[9]]]] on voudrait obtenir la liste
[1, 2, 3, 4, 5, 6, 7, 8, 9].

Ecrire pour ce faire une fonction : def aplatitListe(L) qui admet pour argument la liste à traiter L, et
qui renvoie la liste aplatie obtenue.

Pour tester si un objet est une liste, on peut utiliser la fonction type :

>>> type([2])
list

2 Fibonacci

On l’a vu, la formule de récurrence un = un−1 + un−2 pour la suite de Fibonacci (de conditions initiales
u0 = 0 et u1 = 1) conduit à une fonction récursive de complexité exponentielle, à moins de faire appel à la
mémoïsation, où on retrouve la complexité linéaire attendue de l’algorithme impératif classique (sous l’hypothèse
simplificatrice, et vite fausse bien sûr, que les opérations arithmétiques sur les entiers : somme, produit, s’exécutent
en temps constant.)

On peut établir les deux formules suivantes : si n = 2p est pair, alors un = 2up−1up + u2p et si n = 2p+1 est
impair, alors un = u2p + u2p+1.

(Ce n’est pas utile à l’exercice, mais une méthode pour justifier ces formules peut être de poser A la matrice(
u2 u1
u1 u0

)
=

(
1 1
1 0

)
. On observe en effet que pour tout n, An =

(
un+1 un
un un−1

)
et en écrivant A2p les formules

ci-dessus s’obtiennent assez facilement.)

A l’aide des deux formules précédentes, écrire une fonction récursive def fibo(n) qui calcule le terme
d’indice n de la suite de Fibonacci.

La question qui suit est à traiter à la maison (ou à la fin du TP si vous êtes efficace !) : Justifier la terminaison,
la correction et préciser la complexité de la fonction fibo(n).

3 Graphes acycliques orientés

Un graphe est dit orienté quand une arête joignant deux noeuds est munie d’une direction. Un cycle est un
chemin dont l’origine et l’extrémité coïncident. Exemple d’un graphe acyclique orienté :

CHAPTER 4 ■ INDUCTION AND RECURSION … AND REDUCTION

87

To try these celebrity-finding functions, you can just whip up a random graph.11 Let’s switch each
edge on or off with equal probability:

>>> from random import randrange
>>> n = 100
>>> G = [[randrange(2) for i in range(n)] for i in range(n)]

Now make sure there is a celebrity in there and run the two functions:

>>> c = randrange(n)
>>> for i in range(n):
... G[i][c] = True
... G[c][i] = False
...
>>> naive_celeb(G)
57
>>> celeb(G)
57

Note that though one is quadratic and one is linear, the time to build the graph (whether random or

from some other source) is quadratic here. That could be avoided (for a sparse graph, where the average
number of edges is less than Θ(n)), with some other graph representation (see Chapter 2 for suggestions).

Topological Sorting
In almost any project, the tasks to be undertaken will have dependencies that partially restrict their
ordering. For example, unless you have a very avant-garde fashion sense, you need to put on your socks
before your boots, but whether you put on your hat before your shorts is of less importance. Such
dependencies are (as mentioned in Chapter 2) easily represented as a directed acyclic graph (DAG), and
finding an ordering that respect the dependencies (so that all the edges point forward in the ordering) is
called topological sorting.

Figure 4-5 illustrates the concept. In this case, there is a unique valid ordering, but consider what
would happen if you removed the edge ab, for example—then a could be placed anywhere in the order,
as long as it was before f.

a

b

c

d

e

f

a b c d e f

 DAG Topologically Sorted DAG

Figure 4-5. A directed acyclic graph (DAG) and its nodes in topologically sorted order

11 There is, in fact, a rich theory about random graphs. A web search should turn up lots of material.

www.it-ebooks.info

Pour représenter un graphe en python, on choisira des listes d’adjacence. Si bien que dans l’exemple précé-
dent, en numérotant les sommets a à f de 0 à 5, le graphe sera connu par la liste : [[1, 5], [2, 3, 5], [3], [4, 5], [5], []]

3.1 Recherche de chemin dans un graphe acyclique orienté

L’absence de cycle rend la recherche d’un chemin d’un noeud à un autre plus facile, et se prête bien à une
implémentation récursive. Ecrire donc une fonction chemin(G, n1, n2) qui prend en argument un graphe G (ou
plutôt sa liste d’adjacence), les indices de deux noeuds n1 et n2 et qui retourne True s’il existe un chemin de n1
à n2, et False sinon. (Indication : s’il existe une arête de n1 à n2, alors la réponse est True, sinon, on regarde les
noeuds voisins de n1 et s’il existe un chemin de l’un d’entre-eux vers n2.)

3.2 Création aléatoire de graphe acyclique orienté

Pour l’algorithme qui suivra, il pourra être utile d’être en mesure de créer à la demande des graphes acycliques
orientés. Pour ce faire, en partant d’un certain nombre de noeuds et aucune arête, on va rajouter un certain nombre
d’arêtes, en prenant garde à chaque nouvelle arête de ne pas créer de cycle. On utilisera la fonction randint du
module numpy.random

Pour créer un graphe acyclique orienté comprenant n noeuds, on commence par créer une liste d’adjacence
formée de n listes vides. (Attention à l’initialiser correctement...)

Puis on rajoute, ou on tente de rajouter un certain nombre d’arêtes.

Ecrire une fonction ajouteUneArete(G) qui essaie d’ajouter une arête au graphe G. (Essaie seulement, car
il pourrait arriver qu’aucune arête ne puisse être ajoutée au graphe G) En tirant au hasard les indices de deux
noeuds, si les deux indices sont distincts, si l’arête n’existe pas déjà et si aucun cycle n’est créé avec cette arête,
alors l’arête est ajoutée au graphe. (La fonction pourra retourner True si une arête a été ajoutée, et False sinon.

Ecrire également une fonction creeGraphe(n) qui crée un graphe acyclique orienté formé de n noeuds. (Par
exemple en tentant pour n noeuds de créer n2 arêtes, mais on pourra tenter d’autres valeurs.

3.3 Tri topologique

Un graphe acyclique orienté est utile pour présenter un ensemble de tâches dont certaines doivent impérati-
vement être réalisées avant d’autres. Par exemple : la mise à jour de certains programmes peut nécessiter la mise
à jour de bibliothèques qui elles-mêmes supposent que d’autres bibliothèques soient mises à jour.

Il est alors utile d’ordonner l’ensemble des noeuds de telle manière que si le noeud n1 est placé avant le
noeud n2, alors il n’existe aucun chemin de n2 vers n1 (l’existence d’un tel chemin indiquerait que la tâche associée
au noeud n2 doit être exécutée avant celle liée au noeud n1.)

Dans le cas de l’exemple proposé précédemment, la seule manière d’ordonner les noeuds est a, b, c, d, e, f ,
mais en règle générale, il n’y a pas unicité d’un ordre adéquat.

Exemple :

Déterminer plusieurs tris topologiques du graphe ci-dessus.

Un algorithme simple pour obtenir un tri topologique d’un graphe orienté acyclique est le suivant : on retire
un noeud n et on réalise un tri topologique du graphe obtenu, puis on insère dans la liste triée des noeuds le noeud
n.

On passe pour ce faire en revue les noeuds de la liste triée, et on insère le noeud n retiré initialement après
le dernier noeud qui admet n comme voisin (ou en tête de liste si n n’est l’extrémité d’aucune arête).

Bien sûr, on procèdera avec une procédure récursive.

Indication : Plutôt que de modifier effectivement le graphe pour en retirer un noeud, on suggère d’ajouter
à la fonction qu’on va écrire un argument optionnel entier. Si celui-ci n’est pas fourni, on tâche de réaliser le tri
topologique du graphe entier, et avec un argument entier a, on réalise le tri topologique du graphe réduit à ses a
premiers noeuds, ainsi la fonction pourrait commencer ainsi :

def triTopologique(G, a = None):
""" avec un second argument a, retourne un tri topologique
du sous-graphe formé des a premiers noeuds de G. Sans le second
argument, trie l’intégralité de G."""
if a == None: # on traite tout le graphe

a = len(G)
if a == 1: # un seul noeud, le tri est déjà terminé !

return [0]
....

3.4 Pour aller plus loin

Quelle est la complexité de l’algorithme de triTopologique étudié ci-dessus ? Comment pourrait-on l’amé-
liorer ?

Quid de la complexité de la création d’un graphe aléatoire ? Comment ici aussi améliorer celle-ci ?

3.5 Annexe

Sur http://cahier-de-prepa.fr/mp-kju On pourra télécharger le fichier decorateurs.py qui introduit
deux fonctions nommées trace et memoize qui définissent ce qu’on appelle des décorateurs, car elles viennent
apporter une fonctionnalité supplémentaire à une fonction donnée, en précédant la définition d’une fonction par,
ou bien @trace, ou bien @memoize.

Exemple :

from decorateurs import *

@memoize
def fib(n):

if n <= 1:
return n

else:
return fib(n-1) + fib(n-2)

@trace
def pgcd(a, b):

if b == 0:
return a

else:
return pgcd(b, a % b)

(Essayez fib(100), pgcd(24, 15) par exemple...)

Une précision technique : dans le processus de memoïzation, à chaque fois qu’une valeur est calculée, donnant
la valeur de retour pour des arguments donnés, une entrée est ajoutée dans un dictionnaire, avec comme clé le
tuple formé des arguments d’appels, et comme valeur la valeur de retour de la fonction.

Or un dictionnaire ne peut admettre comme clé que des objets immuables et, pour cette raison, le décorateur
échouera si parmi les arguments d’une fonction donnée figure un objet mutable, comme une liste par exemple.
Aucun souci avec les entiers de la fonction précédente par exemple...

	Listes imbriquées
	Fibonacci
	Graphes acycliques orientés
	Recherche de chemin dans un graphe acyclique orienté
	Création aléatoire de graphe acyclique orienté
	Tri topologique
	Pour aller plus loin
	Annexe

