TP récursivité

1 Listes imbriquées

On suppose qu'une liste L peut contenir parmi ses éléments d’autres listes, qui a son tour contiennent
d’autres listes et ainsi de suite, et on souhaite obtenir une liste formée des "mémes" éléments que la premiére mais
ne contenant, elle, pas de liste...

Autrement dit, de la liste [1, [2, [3, 4], [5, [6, 7111, [8], [[[91]1] 1 on voudrait obtenir la liste
(1, 2, 3, 4, 5, 6, 7, 8, 9].

Ecrire pour ce faire une fonction : def aplatitListe(L) qui admet pour argument la liste & traiter L, et
qui renvoie la liste aplatie obtenue.

Pour tester si un objet est une liste, on peut utiliser la fonction type :

>>> type([2])
list

2 Fibonacci

On l'a vu, la formule de récurrence u, = u,—1 + up—o pour la suite de Fibonacci (de conditions initiales
ug = 0 et up = 1) conduit a une fonction récursive de complexité exponentielle, & moins de faire appel a la
mémoisation, ol on retrouve la complexité linéaire attendue de I’algorithme impératif classique (sous ’hypothese
simplificatrice, et vite fausse bien siir, que les opérations arithmétiques sur les entiers : somme, produit, s’exécutent
en temps constant.)

On peut établir les deux formules suivantes : si n = 2p est pair, alors u,, = 2u,_1u, +u> et sin = 2p+ 1 est
P P D
impair, alors u, = uf, + ug L1
(Ce n’est pas utile a I’exercice, mais une méthode pour justifier ces formules peut étre de poser A la matrice
Uz U 11 U (! P
200 = . On observe en effet que pour tout n, A® = | "+ ") et en écrivant A% les formules
UL Ug 1 0 Up Up_1
ci-dessus s’obtiennent assez facilement.)

A Taide des deux formules précédentes, écrire une fonction récursive def fibo(n) qui calcule le terme
d’indice n de la suite de Fibonacci.

La question qui suit est & traiter & la maison (ou & la fin du TP si vous étes efficace!) : Justifier la terminaison,
la correction et préciser la complexité de la fonction fibo(n).

3 Graphes acycliques orientés

Un graphe est dit orienté quand une aréte joignant deux noeuds est munie d’une direction. Un cycle est un
chemin dont l'origine et 'extrémité coincident. Exemple d’un graphe acyclique orienté :

Pour représenter un graphe en python, on choisira des listes d’adjacence. Si bien que dans ’exemple précé-
dent, en numérotant les sommets a & f de 0 a 5, le graphe sera connu par la liste : [[1, 5], [2, 3, 5], [3], [4, 5], [5], []]

3.1 Recherche de chemin dans un graphe acyclique orienté

L’absence de cycle rend la recherche d’un chemin d’un noeud & un autre plus facile, et se préte bien & une
implémentation récursive. Ecrire donc une fonction chemin(G, nl, n2) qui prend en argument un graphe G (ou
plutot sa liste d’adjacence), les indices de deux noeuds n1 et n2 et qui retourne True s’il existe un chemin de n1
a n2, et False sinon. (Indication : s’il existe une aréte de n1 a n2, alors la réponse est True, sinon, on regarde les
noeuds voisins de n1 et s'il existe un chemin de I'un d’entre-eux vers n2.)

3.2 Création aléatoire de graphe acyclique orienté

Pour I’algorithme qui suivra, il pourra étre utile d’étre en mesure de créer a la demande des graphes acycliques
orientés. Pour ce faire, en partant d’un certain nombre de noeuds et aucune aréte, on va rajouter un certain nombre
d’arétes, en prenant garde a chaque nouvelle aréte de ne pas créer de cycle. On utilisera la fonction randint du
module numpy . random

Pour créer un graphe acyclique orienté comprenant n noeuds, on commence par créer une liste d’adjacence
formée de n listes vides. (Attention a initialiser correctement...)

Puis on rajoute, ou on tente de rajouter un certain nombre d’arétes.

Ecrire une fonction ajouteUneArete (G) qui essaie d’ajouter une aréte au graphe G. (Essaie seulement, car
il pourrait arriver qu’aucune aréte ne puisse étre ajoutée au graphe G) En tirant au hasard les indices de deux
noeuds, si les deux indices sont distincts, si I’aréte n’existe pas déja et si aucun cycle n’est créé avec cette aréte,
alors l'aréte est ajoutée au graphe. (La fonction pourra retourner True si une aréte a été ajoutée, et False sinon.

Ecrire également une fonction creeGraphe (n) qui crée un graphe acyclique orienté formé de n noeuds. (Par
exemple en tentant pour n noeuds de créer n? arétes, mais on pourra tenter d’autres valeurs.

3.3 Tri topologique

Un graphe acyclique orienté est utile pour présenter un ensemble de taches dont certaines doivent impérati-
vement étre réalisées avant d’autres. Par exemple : la mise a jour de certains programmes peut nécessiter la mise
a jour de bibliotheques qui elles-mémes supposent que d’autres bibliothéques soient mises a jour.

Il est alors utile d’ordonner ’ensemble des noeuds de telle maniére que si le noeud n1 est placé avant le
noeud n2, alors il n’existe aucun chemin de n2 vers n1 (I’existence d’un tel chemin indiquerait que la tache associée
au noeud n2 doit étre exécutée avant celle liée au noeud ni.)

Dans le cas de I'exemple proposé précédemment, la seule maniére d’ordonner les noeuds est a,b,c,d, e, f,
mais en regle générale, il n’y a pas unicité d’un ordre adéquat.

Exemple :

Déterminer plusieurs tris topologiques du graphe ci-dessus.

Un algorithme simple pour obtenir un tri topologique d’un graphe orienté acyclique est le suivant : on retire
un noeud n et on réalise un tri topologique du graphe obtenu, puis on insére dans la liste triée des noeuds le noeud
n.

On passe pour ce faire en revue les noeuds de la liste triée, et on insere le noeud n retiré initialement apres
le dernier noeud qui admet n comme voisin (ou en téte de liste si n n’est 'extrémité d’aucune aréte).

Bien siir, on procedera avec une procédure récursive.

Indication : Plutét que de modifier effectivement le graphe pour en retirer un noeud, on suggere d’ajouter
a la fonction qu’on va écrire un argument optionnel entier. Si celui-ci n’est pas fourni, on tache de réaliser le tri
topologique du graphe entier, et avec un argument entier a, on réalise le tri topologique du graphe réduit a ses a
premiers noeuds, ainsi la fonction pourrait commencer ainsi :

def triTopologique(G, a = None):

""" avec un second argument a, retourne un tri topologique

du sous-graphe formé des a premiers noeuds de G. Sans le second

argument, trie 1’intégralité de G."""

if a == None: # on traite tout le graphe
a = len(G)

if a == 1: # un seul noeud, le tri est déja terminé !
return [0]

3.4 Pour aller plus loin
Quelle est la complexité de I’algorithme de triTopologique étudié ci-dessus ? Comment pourrait-on I'amé-
liorer ?

Quid de la complexité de la création d’un graphe aléatoire 7 Comment ici aussi améliorer celle-ci?

3.5 Annexe

Sur http://cahier-de-prepa.fr/mp-kju On pourra télécharger le fichier decorateurs.py qui introduit
deux fonctions nommeées trace et memoize qui définissent ce qu’on appelle des décorateurs, car elles viennent
apporter une fonctionnalité supplémentaire & une fonction donnée, en précédant la définition d’une fonction par,
ou bien @trace, ou bien @memoize.

Exemple :

from decorateurs import *

Omemoize
def fib(n):
if n <= 1:
return n
else:

return fib(n-1) + fib(n-2)

Q@trace
def pgcd(a, b):
if b == 0:
return a
else:

return pgcd(b, a % b)

(Essayez fib(100), pged(24, 15) par exemple...)

Une précision technique : dans le processus de memoization, & chaque fois qu’une valeur est calculée, donnant
la valeur de retour pour des arguments donnés, une entrée est ajoutée dans un dictionnaire, avec comme clé le
tuple formé des arguments d’appels, et comme valeur la valeur de retour de la fonction.

Or un dictionnaire ne peut admettre comme clé que des objets immuables et, pour cette raison, le décorateur
échouera si parmi les arguments d’une fonction donnée figure un objet mutable, comme une liste par exemple.
Aucun souci avec les entiers de la fonction précédente par exemple...

	Listes imbriquées
	Fibonacci
	Graphes acycliques orientés
	Recherche de chemin dans un graphe acyclique orienté
	Création aléatoire de graphe acyclique orienté
	Tri topologique
	Pour aller plus loin
	Annexe

