Eléments de correction

1 Listes imbriquées

Par exemple :

def aplatitListe2(L):
M =[]
for i in L:
if type(i) == list:
M += aplatitListe2(i)
else:
M.append (i)
return M

2 Fibonacci
Une réponse possible :

def fibo(n):
if n < 2:
return n
p=n//2
if n % 2:
return fibo(p) ** 2 + fibo(p + 1) ** 2
else:
fp = fibo(p)
return 2*fibo(p-1)*fp + fp *x 2

Bien sir, il vaut bien mieux éviter d’écrire fibo(p)*fibo(p) par exemple, pour éviter de calculs redondants et
coliteux (et la variable temporaire fp ci-dessus est la pour la méme raison).

Pour la terminaison de fibo, on peut remarquer que ’argument n de la fonction est un variant, car si n < 1,
la fonction s’interrompt, et que sinon, les valeurs invoquées le sont pour des nouvelles valeurs de n strictement
inférieures.

Pour la correction, elle provient bien siir de 'exactitude des deux formules de récurrences données dans
I’énoncé (lesquelles se déduisent comme indiqué par I’énoncé par le calcul matriciel de A%P en fonction de AP.)

Pour ce qui concerne la complexité, en notant 7'(n) le temps nécessaire a l'exécution de fibo(n), alors on
peut approcher T'(2p) par T'(p) +T'(p — 1) + ¢ ou ¢ est une constante et T'(2p+ 1) par T'(p) + T'(p+ 1) + c.

On devine une complexité linéaire selon n... Le montrer est un peu délicat. En posant u, = T(2"), on
approche uy4+1 par 2u, + c et le calcul montre alors que u,, = 2"(ug — ¢) + ¢ donc T'(2") est en effet proportionnel
a 2"... L’hypothése de croissance de T' permet alors de justifier que T'(n) est en O(n).

3 Tri topologique

def add_node(G, nl, n2):
G[n1] .append(n2)

def initialiseGraphe(n):
G = [[] for i in range(n)]
return G

def chemin(G, ni, n2):

""" retourne True s’il existe un
chemin de nl vers n2, False sinon """
if n2 in G[n1]:

return True
for n in G[ni1]:

if chemin(G, n, n2):

return True

return False

def ajouteUneArete(G):
""" Choisit deux noeuds distincts. Si les deux noeuds
sont indentiques, ou si l’aréte existe déja, ou si
le graphe obtenu a un cycle, ne fait rien, sinon ajoute
une aréte a G """
nbNoeuds = len(G)
nl = randint(nbNoeuds)
n2 = randint(nbNoeuds)
if n1==n2 or n2 in G[nl] or chemin(G, n2, nl):
return False
else:
G[n1] .append(n2)
return True

def creeGraphe(n):
G = initialiseGraphe(n)
for i in range(n*n):
ajouteUneArete(G)
return G

def triTopologique(G, a = None):
""" avec un second argument a, retourne un tri topologique
du sous-graphe formé des a premiers noeuds de G. Sans le second
argument, trie 1l’intégralité de G."""
if a == None:
a = len(G)
if a ==
return [0]

tri = triTopologique(G, a-1)
min_i = 0
i=a-2
while i >= 0 and min_i ==

if a-1 in G[tril[il]:

min_i = i+1

i-=1
tri.insert(min_i, a-1)
return tri

La complexité de la fonction triTopologique est en O(n * (n+ a)) ou n est le nombre de noeuds du graphe
a trier, et a son nombre d’arétes. En effet, en notant 7'(n) le nombre d’instructions nécessaires a obtenir un tri
topologique d’un graphe de n noeuds, on observe que T'(1) = 0, et pour tout n, T'(n) = T (n — 1) + O(n + a) car
une fois trié¢ un graphe de n — 1 noeuds, on passe en revue les arcs issus de ces n — 1 noeuds (au nombre de a au
plus) puis on insére le noeud restant dans une liste de n — 1 termes.

Un meilleur algorithme pour réaliser le tri tropologique d’un graphe acyclique orienté est le suivant :
e On compte pour chaque noeud le nombre d’arétes qui y aboutissent. Une fois ce travail effectué, alors les

candidats pour commencer notre liste triée sont faciles a trouver : ce sont ceux qui ne sont l'extrémité
d’aucune aréte, donc ceux pour lesquels le nombre obtenu vaut 0.

e On crée une liste formée de ces noeuds (qui peuvent tous étre initiaux) et on retire n’importe lequel
d’entre eux (autant utiliser bien str pop pour des raisons d’efficacité...), et on met a jour la liste des
nombres d’arétes obtenue précédemment (en considérant qu’on a retiré du graphe le sommet choisi). Si de
ce fait, des noeuds se retrouvent sans noeud prédécesseur, on les rajoute a la liste des noeuds qui ont cette
propriété...

Une implémentation de cet algorithme est la suivante :

def triTopologique2(G):
n = len(G)
nbPred = [0] * n
for i in G:
for j in G[i]:
nbPred[j] += 1
L=10
for i in range(n):
if nbPred[i] == 0:
L.append (i)
tri = []
while len(L) > O:
i = L.popQ)
tri.append (i)
for j in G[i]:
nbPred[j] -= 1
if nbPred[j] == 0:
L.append(j)
return tri

Sa complexité est en O(n + a) ou n est le nombre de noeuds et a le nombre d’arétes. En effet, les deux premiéres
boucles imbriquées comptent n + a itérations, la seconde boucle for en compte n et la boucle conditionnelle qui
termine la fonction compte n itérations, et le nombre total d’itérations de la boucle for a l'intérieur de celle-ci
compte a itérations...

Une autre approche équivalente en termes de complexité et trés élégante est de parcourir en profondeur le
graphe, en gardant en mémoire les noeuds déja visités. Voici 'implémentation de 'un de vos prédécesseurs :

def triTopologique2(G):
n = len(G)
L, visites = [], [False for i in range(n)]
for i in range(n):
if not visites[il:
parcoursProfondeur (G, i, visites, L)
return L[::-1]

def parcoursProfondeur(G, n, visites, L):
visites[n] = True
for v in G[n]:
if not visites[v]:
parcoursProfondeur (G, v, visites, L)
L.append (n)

Pour ce qui concerne la création aléatoire de graphe acyclique orienté, la complexité de I'algorithme naif proposé
est élevée a cause de la vérification effectuée a chaque aréte ajoutée qu’un cycle n’est pas créé. Cette vérification
est faite par un parcours en profondeur qui, pour un graphe de n noeuds et a arétes a une complexité en O(n + a).

2

Comme il y a au plus n® arétes pour ce que propose 1I’énoncé, la complexité obtenue est ici de l'ordre de

O(n?).

Une amélioration pourrait étre de garder trace au fur et & mesure de la construction du graphe de I’existence
ou non d’'un chemin du noeud ¢ au noeud j. On peut s’aider d’une matrice de n lignes et colonnes pour ce faire.
L’ajout d’'une aréte conduit & mettre & jour une colonne de la matrice et est ainsi une opération linéaire (selon le
nombre n de noeuds) ce qui conduit & une complexité en O(n3).

Une idée astucieuse, due a un éléve, pour améliorer la complexité de cet algorithme est de partir du principe
qu’un graphe acyclique orienté admet toujours un tri topologique, et d’'imposer en quelque sorte celui-ci en mélan-
geant les noeuds, puis en n’ajoutant d’arétes entre les noeuds i et j qu’a condition que le noeud ¢ précéde j dans
la liste mélangée des noeuds.

Une premiére version est de complexité en O(n?) (car le test de présence d’'une aréte se fait en temps linéaire) :

def randint2(n):
i1, i2 = randint(n), randint(n)
if i2 < itl:
i1, i2 = i2, il
return (i1, i2)

def creeGraphe2(n):
L = list(range(n))
shuffle(L)
G = [[] for i in range(n)]
for i in range(n*n):
i1, i2 = randint2(n)
if i1 1= i2:
nl, n2 = L[i1], L[i2]
if not n2 in G[ni1]:
G[n1] .append(n2)
return G

et une seconde version avec une matrice d’adjacence pour vérifier I’existence d’une aréte entre deux noeuds en
temps constant (ce qui conduit alors & une complexité en O(n?) qui ne peut qu’étre optimale bien str...) :

def creeGraphe3(n):

M = [[False for i in range(n)] for j in range(n)]
L = list(range(n))

G = [[] for i in range(n)]

shuffle(L)

for i in range(n*n):
il, i2 = randint2(n)
if i1 1= i2:
nl, n2 = L[i1], L[i2]
if not M[n1] [n2]:
G[n1] .append(n2)
M[n1] [n2] = True
return G

Remarque : pour battre efficacement un jeu de cartes, des algorithmes existent en temps linéaire, pourvu bien sir
de disposer d’un générateur efficace de nombres aléatoire. La fonction shuffle utilisée ci-dessus vient du module
numpy . random.

	Listes imbriquées
	Fibonacci
	Tri topologique

