TP révisions B - Caractérisation d'une bobine

Problématique : Comment déterminer expérimentalement une impédance ?

<u>Objectifs</u>: Justifier et mettre en œuvre un protocole expérimental permettant de déterminer l'impédance d'une bobine i.e. son inductance et sa résistance interne.

A) Présentation et étude théorique

1) Expressions reliant les grandeurs recherchées {L et r} à {|Z| et $\theta = arg(Z)$ }

Une bobine réelle correspond à une association série d'une inductance pure, notée L, et d'une résistance interne notée r :

On étudiera cette bobine en Régime Sinusoïdal Forcé (RSF).

On cherche à <u>déterminer expérimentalement l'inductance L et la résistance interne r d'une bobine réelle</u>. Pour cela, on introduit son impédance complexe \underline{Z} et plus particulièrement $|\underline{Z}|$ et $\theta = \arg(\underline{Z})$.

 \bigcirc 1. Donner l'expression de l'impédance complexe totale \underline{Z} d'une bobine réelle. En déduire les expressions de L et de r en fonction de la fréquence d'étude f, de $|\underline{Z}|$ et de θ .

2) Expressions reliant {|Z| et θ = arg(Z)} aux grandeurs mesurées {U ; I et ϕ }

On oriente la bobine réelle en convention récepteur en introduisant u(t) la tension à ses bornes et i(t) l'intensité qui la traverse. u(t) et i(t) sont deux grandeurs sinusoïdales alternatives (i.e. de valeurs moyennes nulles) de fréquence f. On note U l'amplitude de u(t); I l'amplitude de i(t); ϕ le déphasage de u(t) par rapport à i(t); ϕ et ϕ sont les notations complexes respectives de u(t) et i(t).

 \bigcirc 2. Déterminer les expressions de |Z| et de θ avec les notations introduites.

Dans la suite, on alimente la bobine avec un GBF délivrant une **fém sinusoïdale alternative** de sorte que les grandeurs u(t) et i(t) soient également sinusoïdales alternatives. On choisit $f = 100 \ Hz$.

B) Mesure du module |Z| et de l'argument θ = arg(Z) de l'impédance

- \bigcirc 3. D'après la question 2, proposer un protocole permettant de déterminer $|\underline{Z}|$ et θ , vous schématiserez le montage en indiquant tous les branchements.
- Une fois validé, câbler ce circuit.
- → 4. Déterminer la valeur de |Z|. Evaluer l'incertitude sur cette mesure.
- \supset 5. Déterminer la valeur de θ . Evaluer l'incertitude sur cette mesure.

C) Conclusion : impédance de la bobine

- → 6. Avec les résultats précédents, déterminer les valeurs de L et de r. Analyser les résultats.
- ⇒ 7. La valeur de la résistance r étant connue, proposer un autre protocole permettant de déterminer expérimentalement la valeur de l'inductance L.