
TP 7 B : Titrages calorimétrique et potentiométrique

Partie I : Enthalpie standard de réaction - Titrage calorimétrique Equation bilan de la réaction :

$$HO^- + H^+ = H_2O$$
 $K = 1/K_E = 10^{14}$

Espèces spectatrices : Na⁺ et Cl⁻, qui forment NaCl : Chlorure de Sodium, alias « sel de table »

	HO ⁻	+	H ⁺	=	H ₂ O
t = 0	C _b		C _a		0
t = t _{int}	C _b - ξ		C _a - ξ		ξ
t = t _f	C _b - ξ _f		$C_a - \xi_f$		ξ _f

Réaction exothermique (voir enthalpie standard de réaction), puis baisse de température lorsqu'équilibre dépassé : plus de réaction, ajout d'une solution à température ambiante

V (mL)

Mesures obtenues :

$$V_{\text{\'eq}}$$
 = 50 mL

$$C_b = C_a = 1 \text{ mol.L}^{-1}$$

$$\Delta_{r}H = (T_0-T)*C_{eau}/C_{b}x = -76 \text{ kJ.mol}^{-1}$$

Résultat : $\Delta_r H < 0$: la réaction est exothermique : en accord avec la courbe

Partie II : Potentiel standard – Produit de solubilité – Titrage potentiométrique à intensité nulle

Equation bilan de la réaction :

$$Ag^{+} + Cl^{-} = AgCl$$
 $K = 1/K_s = 1/10^{-pKs} = 10^{9,75}$: réaction totale

Espèces spectatrices : Na⁺ et NO₃⁻

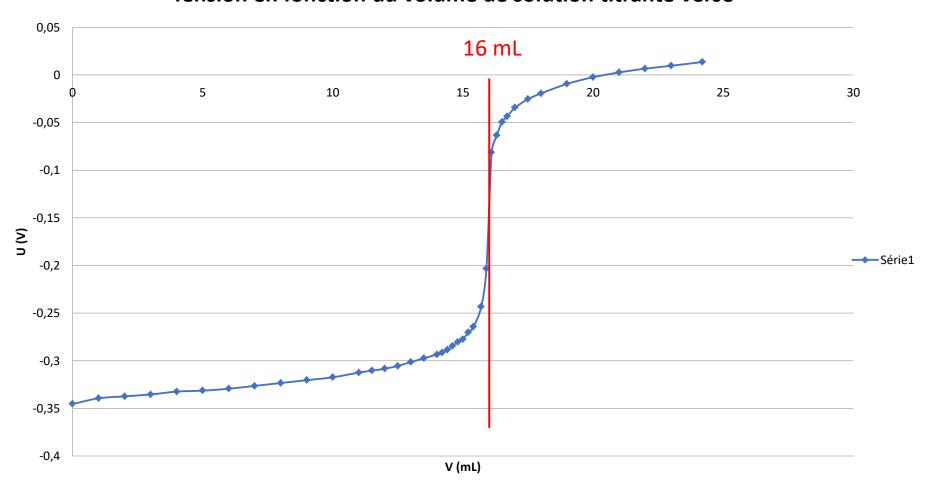
	Ag ⁺	+	CI ⁻	=	AgCl
t = 0	C _a		C_s		0
t = t _{int}	C _a - ξ		C _s - ξ		ξ
t = t _f	$C_a - \xi_f$		$C_s - \xi_f$		ξ_{f}

Equivalence : $C_sV_s = C_aV_E$

Application numérique : $V_E = 15 \text{ mL}$

Formule de Nernst :
$$E = E^0 + \frac{0.06}{a} \log \left(\frac{a(ox)^{\nu_{ox}}}{a(red)^{\nu_{red}}} \right)$$

Donc pour cette réaction,
$$E = E^0 + 0.06 \log(\frac{[Ag^+]}{1})$$


Au cours de la réaction, [Ag+] augmente, donc le potentiel diminue, donc la tension U augmente au cours du titrage. Pour V < Ve : Augmentation faible : la plupart des Ag+

réagit

Pour V > Ve : Augmentation plus forte : les Ag⁺ sont

ajoutés sans réagir

Tension en fonction du volume de solution titrante versé

$$V_{E} = 16,5 \text{ mL}$$

Selon le graphe,

$$V_E = 16 \text{ mL}$$

 $C_S = C_a V_e / V_S = 1,6 \text{ mol.L}^{-1}$

Bilan : Valeurs + ou – en accord avec les valeurs théoriques ($V_E = 15 \text{ mL}$; $C_S = 15 \text{ mol.L}^{-1}$)