TDE3 – Logique combinatoire – Portes logiques

Capacités exigibles	ChE3	TDE3	TP5
Interrupteurs commandés par une tension.			
Porte logique NOT.			
Portes logiques AND, OR, NAND, NOR à deux ou plusieurs entrées.	_		_
Porte logique XOR.	•	•	•
Déterminer la table de vérité d'une association d'interrupteurs commandés par une tension.			
Identifier par sa table de vérité la porte logique réalisée par une association d'interrupteurs commandés par une tension.			

0 Exercices classiques vus en cours :

B: Identification des portes logiques correspondant à un circuit à interrupteurs commandés

C.1: Justification d'égalités dans l'algèbre de Boole

C.2 : Justification de l'expression de l'opération XOR en fonction des opérations NOT et OR

C.3: Justification des lois de de Morgan

C.3: Justification de l'obtention des opérateurs NOT, AND et OR via des associations de portes NAND

1 Algèbre de Boole

Montrer que :

Règles élémentai	ires	:
------------------	------	---

1)
$$a \cdot a = a \ et \ a + a = a$$

2)
$$(a + b) + c = a + (b + c)$$

3)
$$a \cdot (b+c) = a \cdot b + a \cdot c$$

Simplifications:

$$4) \quad a + a \cdot b = a$$

5)
$$a + \overline{a} \cdot b = a + b$$

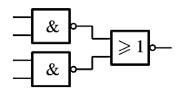
6)
$$a \cdot (\overline{a} + b) = a \cdot b$$

Propriétés de l'opérateur NOT :

7)
$$a + \overline{a} = 1$$
 et $a \cdot \overline{a} = 0$

8)
$$\overline{a+b} \neq \overline{a} + \overline{b}$$

9)
$$\overline{a \cdot b} \neq \overline{a} \cdot \overline{b}$$

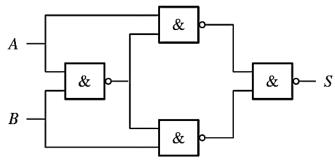

10)
$$\overline{a \cdot (b+c)} \neq \overline{a} \cdot (\overline{b} + \overline{c})$$

2 / Groupe complet de la porte NOR

En utilisant une loi de de Morgan, proposez, à l'aide uniquement de portes NOR, un circuit logique permettant de réaliser les opérations NOT, AND et OR.

3 Réalisation d'une porte AND à 4 entrées

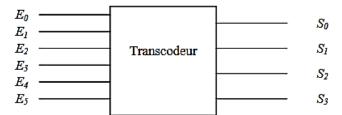
○ Montrer que cette association de portes logiques correspond à une porte AND à 4 entrées i.e. que la sortie vaut 1 uniquement si toutes les entrées valent 1.



4 Porte XOR

- 1. On note a et Y les deux entrées d'une porte XOR. L'entrée Y est nommée commande. Exprimer la sortie s en fonction de l'entrée a lorsque Y=0. Même question lorsque Y=1.
- 2. Détecteur d'imparité :
 - (a) On réalise une porte XOR sur trois entrées $a \oplus b \oplus c$. Montrez que

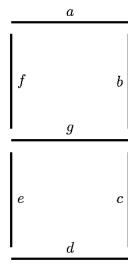
$$a\oplus b\oplus c=c\cdot b\cdot a+c\cdot \bar{b}\cdot \bar{a}+\bar{c}\cdot \bar{b}\cdot a+\bar{c}\cdot b\cdot \bar{a}\ .$$


- (b) En déduire que cette sortie vaut 1 uniquement si le groupe (a, b, c) contient un nombre impair de 1.
- 3. Réalisations

- (a) Montrer que le circuit logique ci-dessus réalise une porte XOR.
- On rappelle que l'opération XOR est donné par $a \oplus b = \overline{b} \cdot a + b \cdot \overline{a}$.
- (b) Proposer un circuit logique équivalent à la porte XOR constitué uniquement de portes NOT, AND et OR.
- (c) À partir de la question précédente, proposez un circuit logique permettant de réaliser l'opération XNOR.

5 Exemple de transcodeur : afficheur hexadécimal sept segments

Le transcodeur sert à passer d'un code à un autre. On calcule chaque sortie S_j en fonction des combinaisons des entrées E_i .

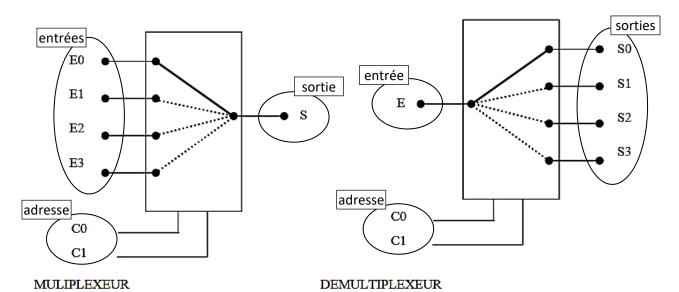

On souhaite afficher sur un afficheur 7 segments (diodes électroluminescentes LED) le chiffre ou la lettre correspondant à un nombre binaire :

En entrée, on a un nombre binaire de 4 bits qui correspond aux valeurs de 0 à F en hexadécimal. En sortie, on cherche le pilotage des sept segments de l'afficheur soit 7 sorties.

Chaque segment est relié à une LED. Dans cet exercice, nous avons choisi l'état allumé égal à 1. Par convention, les segments sont numérotés dans l'ordre alphabétique. La numérotation se fait en spirale, en partant du haut, conformément à la figure ci-contre.

Les données d'entrées sont enregistrées sur 4 bits notés xyzt. Le tableau ci-dessous rappelle les valeurs à prendre ainsi que le caractère à afficher sur l'afficheur.

Héxadécimal	0	1	2	3	4	5	6	7
Binaire	0000	0001	0010	0011	0100	0101	0110	0111
Affichage	0	1	2	3	4	5	6	7
Héxadécimal	0	_						
nexadecimai	8	9	A	В	$^{\circ}$ C	D	$_{ m E}$	F
Binaire	1000	1001	1010	1011	1100	D 1101	E 1110	F 1111



- 1. Remplir la table de vérité donnant la sortie abcdefg en fonction du mot binaire d'entrée xyzt.
- 2. Proposer une formule booléenne pour a permettant de répondre à cette table de vérité.

6 Multiplexeur et démultiplexeur

Un multiplexeur est un circuit d'aiguillage commandé : on retrouve en sortie une des entrées choisie grâce à la commande d'adresse. Le démultiplexeur effectue l'opération inverse.

Schémas de principe du Multiplexeur et du démultiplexeur :

On étudie un multiplexeur à deux entrées, notées e_0 et e_1 , et un bit d'adresse a. La sortie vaut e_0 si a=0 et e_1 dans le cas contraire.

- 1. Écrire la table de vérité du multiplexeur.
- 2. Montrer que la sortie est équivalente à $\overline{a} \cdot e_0 + a \cdot e_1$
- 3. En déduire le schéma logique correspondant.

On étudie un démultiplexeur à deux sorties, notées s_0 et s_1 , et un bit d'adresse s_0 . La valeur du bit d'entrée s_0 et transmise à la sortie s_i selon la valeur du bit d'adresse s_0 et s_0 et s_1 e si s_2 e si s_3 e sortie qui ne correspond pas au bit d'adresse.

- 4. Écrire la table de vérité du démultiplexeur.
- 5. Proposer un schéma logique correspondant.