Chapitre M1. Dynamique du point en référentiel non galiléen

Images satellitaires des cyclones Katrina et Idai.

Katrina a touché le sud-est des Etats-Unis (hémisphére
nord) en 2005 et Idai le sud-est du continent Africain
(hémisphére sud) en 2019.

On constate que le sens de rotation des masses d’air est
différent : il s’agit d’une manifestation du caractére non
galiléen du référentiel terrestre qu’on peut interpréter
comme l’effet d’une pseudo-force : la force d’inertie de
Coriolis.

PR

ge satellitaire de Katrina le Idai proche de son intensité maximale le

28 aodt 2005 a 1 h UTC (source : NASA). 14 mars 2019.
INTRO :
Ce chapitre compléte la partie « Mécanique » étudiée en 1¢ année. Contrairement au temps qui est considéré absolu
en mécanique classique, le mouvement est relatif i.e. qu'il dépend du référentiel d’étude. En 1¢ année, les systémes
ont été étudiés dans un référentiel galiléen. Cependant, dans certains cas, il est plus judicieux de travailler dans un
référentiel non galiléen pour étudier le mouvement.

Buts de ce chapitre : Etablir les lois de composition des vitesses et des accélérations ; Enoncer les lois de la dynamique
du point en référentiel non galiléen ; Décrire les forces d'inertie et citer des manifestations du caractéere non galiléen du
référentiel terrestre.

Prérequis :
1e année : Cinématique et dynamique du point.

Plan du chapitre :
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A) Cinématique

1) Mouvement d’un référentiel par rapport a un autre — Translation, rotation (rappels)

_—
Soient R et R' deux référentiels de repéres respectifs (0, uy, Uy, u,) et (0, u,', uy', u,").

On appelle R le référentiel absolu et R' est en mouvement par rapport a R, il est appelé référentiel relatif.
Un référentiel est lié a un solide de référence. Le mouvement d’un solide est caractérisé par son vecteur
rotation et la vitesse de I'un de ses points.

Le mouvement de R’ par rapport a R est donc décrit par :

-U(0") /g : vitesse de 0’, origine de R’, dans R

- ﬁR,/R : vecteur rotation de R’ par rapport a R

* 7(0") g caractérise un mouvement de translation de R’/ R :

DEFINITION :
R’ est en TRANSLATION par rapport a R lorsque les directions du repére lié a R’ restent fixes par rapport

au référentiel R.
Sans perte de généralité, on peut ainsi choisir les axes de R’ paralléles a ceux de R.
Conséquence : Tous les points fixes dans R’ ont le méme mouvement dans R.

R' est en translation par rapport a R <:)

[ ‘] [ ] [ ] [ ] < Translation

. oo . ---3 rectiligne ‘

v

T
Translation
circulaire

=

« Translation
qguelconque

'(14)

trajectoire de (' dans %

o X

Figure 1.5 — Le référentiol 57 est an Iranslation par rappert au référantiel 52 1l ast
représenté 4 quatre instants différents, ty, 12, 13 et 1.
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-
¢ Qg /g caractérise un mouvement de rotation de R'/R:

On se limite aux rotations autour d’un axe fixe dans R.

DEFINITION : A=(0z2)
R’ est en ROTATION AUTOUR D’UN AXE A FIXE par rapport au référentiel R, s’il existe >
une unique droite A immobile par rapport a R’ et par rapport a R.

Conséquence :
Tous les points fixes dans R’ sont animés dans R d’'un mouvement circulaire d’axe A et

de vitesse angulaire 0 égale 3 la vitesse angulaire de rotation de R'autour de A.
En coordonnées cylindriques d’axe (0z) = 4, le vecteur vitesse de P est :
B(P)p =1.0.up
Avecr = HP, H étant le projeté orthogonal de P sur 4. X

Le vecteur rotation de R par rapport a R est : ﬁRr/R = 9.7,)

=

« Chaque élément du ¥
manége est en rotation

autour de I'axe central '\B(t)
vertical fixe par rapport * %5
au référentiel terrestre.

X

Figure 1.6 — Le référentiel %'(0,x',y’,z) est en rotation autour de I'axe fixe (0z).

2) Mouvements absolu et relatif

Soient R et R’ deux référentiels que lI'on munit de leurs repéres respectifs (O,u_x’,u_y’,u_z’) et
4 ! li !
(0 uy, uy, uy').

Le mouvement de M dans R est nommé mouvement absolu. On introduit :

le vecteur position la vitesse absolue I'accélération absolue
5 500 (Ww) I (dz—*0M>
oM Vg =V /R=\| "7 ag =a /R = 2
dt /R dt /R

Le mouvement de M dans R’ est nommé mouvement relatif. On introduit :

le vecteur position la vitesse relative I’accélération relative
dO'M d*0'M
—_— — - Eand -
’ v, = v(M = a.-=a(M =|———
o'M r ( )/Rr ( dt ) r ( )/RI ( dt2 )
/R /R
Translation Rotation uniforme
de Q' par rapport a & de Q' par rapport a R

« lllustrations de changements de référentiel dans les cas
translation et rotation uniforme d’un référentiel par rapport a
I'autre. Les lignes visualisées sur les photos correspondent a la
trajectoire d’un point fixe dans un référentiel, vu depuis I'autre
référentiel.

Autre exemple : cf fig.1.8. de I'annexe 2.

Dans Q'

Dans R

Vidéos pour une rotation : https://cahier-de-prepa.fr/mp-lafayette/docs?rep=115 vidéos n°1 et n°2
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3) Formule de dérivation vectorielle — Formule de Bour

a) Position du probléme

Soit A un vecteur quelconque qui dépend du temps. On peut le décomposer dans la base de R ou dans
celledeR’":

.
A = xuy + yu, + zu,
- R

A=x"u+yu, +z'u,’

¢ On ala dérivée temporelle de AdansR:
dA d, . _ o
—| == (xux + yu, + Zuz) = XUy + yu, + zu,
dt /R dt .

Puisque (i, Uy, U,) sont des vecteurs constants dans R.

+ De méme, on a la dérivée temporelle de A dans R’ :

dA) d — —_— — . — . — . —
<E> = (E( u' +y'uy, + Z’uz')> = x'u,’ + y'uy’ + z'u,’
/R /R!

. ! ! 1A !
Puisque (u,',u,’,u,’) sont des vecteurs constants dans R'.

b) Lien entre les dérivées : formule de Bour

dt dt
(dZ) <dZ> oAl
Y =\ 755 R//R *
dt IR dt R

NB : On vérifie la validité de cette relation dans les cas particuliers ou :

. da dA
La formule de Bour donne le lien entre (—A)/ et (—A)/ :
R R/

¢ R’ en translation par rapporta R : ¢

! ! I dl‘r dA ¥
Dans ce cas, | Uy , Uy, , U, | sont constantsdans Rdonc (—) =(—) .
dt /R dt /R! j

Et ceci concorde avec la formule (*) puisque, dans le cas d’une translation, v, "ot '
— —
QR’/R == 0. Q

¢ R’ en rotation autour d’un axe fixe A par rapport a R :

A=xu'+ y'uy,' + zu, ¥
avec u,' = cos(8) uy + sin(6) u, et u,’ = —sin(0) u, + cos(8) u, oo
et ﬁ)R’/R = é.u—Z) Z 5 '\ X
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4) Loi de composition des vitesses

a) Cas général
S doM\  (d(00"+0'M)\ _ (dOO’ L (doM
v(M)/r = dt - dt “\ dt dt
/R /R /R /R

!

® . do
(= U(M)/R = U(O )/R +

+ Qg AO'M
dt >/RI

(DM g = V(M) jp + V. & Vg =0, + 7]

avec U, = U(0") g + Qg g ANO'M  lavitesse d'entrainement 7 7
Rq : Représentation de la loi de composition des vitesses par le « triangle des A
vitesses ». 7

b) Cas particulier ou R’ est en translation par rapport a R

Ve = 17(0 ) R
S Exercice classique : On considére un enfant qui marche dans un train. Sa vitesse vue depuis le sol

correspond a sa vitesse dans le train additionnée a la vitesse du train par rapport au sol :
v(enfant)so, = V(enfant) jyqin + v(train) 5o

Vq vy Ve

Que vaut U(enfant) rqin lorsque 'enfant est vu immobile depuis le quai ?

Ay
Autre exemple de composition des vitesses dans le cas translation : B nwcre
Un bateau traverse une riviere. vitesse Hateau vitesse de1'ean
On note v,,, la vitesse du courant et v, la norme du vecteur o
vitesse du bateau par rapport a la riviére.
A X

c) Cas particulier ou R’ est en rotation autour d’un axe fixe A par rapport 3 R

On choisit (0z) = 4

v, = ER’/R A OM|

< Exercice classique : Dans le cas ol R’ est en rotation autour de A= (0z) par rapport a R, vérifier qu’on
peut écrire v, = ¥(0") /g + Qg,/r A 0'M sous la forme v, = ﬁR’/R AOM.

Ex:
On considere un enfant qui marche dans un manege. Sa vitesse vue depuis le sol
correspond a sa vitesse dans le manege additionnée a la vitesse d’entrainement :

1})(enfant)/sol = 17(enfant)/manége + Qmanége/sol ANOM

— = —
Va Ur Ve

On a7, = .60.1ug en coordonnées cylindriques (cf § A.4.d) avec ﬁmanége/sol =0.u,
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5) Loi de composition des accélérations

a) Cas général (expression générale de a, hors programme en annexe)

AM)g =d(M)p +a,+a, < az=a,+a,+a,

avec a, l'accélération d'entrainement

et a; = 20, /g A7y l'accélération de Coriolis

b) Preuve pour le cas ou R’ est en translation par rapport a R

. dv, dv, dﬁ(O')/R
“a=“(M>/R=(d—f> =<d[> +<T
/R /R /R

e 59(5) <) o
/R /Rr

= aq = ay +d(0") p
avec l'accélération d'entrainement :

et 1'accélération de Coriolis :

A retenir : Lorsque R’ est en translation par rapport a R, 'accélération de Coriolis est nulle.

c) Preuve pour le cas ou R’ est en rotation UNIFORME autour d’un axe fixe par rapport a R

On choisit (0z) = A4

aR’/R = 9..EZ=E£

N N dv_) dv_) d(ﬁR’ R /\0—1\1)
a, =a(M) g = (d_ta> = ( dtr> + ( /dt
/R /R /R

(@)
dt /R

(d(ﬁ’R, R A W’)) _ <d0—M
/R

dU—r) — RN N - —_
+QRI/R/\17T=ar+QRI/R/\Ur
/R

dt = Qgr/g A 7) = Qprjp A (Ur + Qpr/p A OM)
/R

d(M)/g = A(M) g, + Qprjp A (Qrrjg NOM) + 2Qp1 g AV, & ag=a,+a,+a;

avec l'accélération d'entrainement : ’(Te = Qp RN (Qpr RN OM)‘

et 1'accélération de Coriolis : ]a—c =20, /RN v_A

ChM1. Référentiels non galiléens 6 MP/MPI La Fayette



d) Point coincident

DEFINITION :
Le POINT COINCIDENT C est le point confondu géométriquement avec le point M 3 l'instant ¢ et fixe dans
le référentiel R’ .

Ex : cf fig.1.9 de I'annexe 2

Appliguons la loi de composition des vitesses au point coincident :
D(C) g = B(C)jps + B(0) g + Qg AOC =0+ (0 g + Qg ANO'M =7,

La vitesse d’entrainement correspond donc a la vitesse du point coincident C dans R.
De méme, I'accélération d’entrainement correspond a I'accélération du point coincident dans R.

Il est intéressant d’utiliser ces résultats dans le cas ou R’ est en  sityation st p
rotation uniforme autour de (0z) = A fixe par rapport a R car
cela permet de calculer facilement la vitesse et I'accélération |
d’entrainement. . /// Hia_f(M) N
C décrit un cercle d’axe (0z) a la vitesse angulaire constante 6. o s
En coordonnées cylindriques d’axe (0z) = 4, avec r = HM, H a y
étant le projeté orthogonalde M sur4dat,ona:

Ve = 3(C)r = 7.0.7g 0 7

lo v, = r. 6.1,
a, =a(C) g = -r.02.%; 9
‘(:) a,=-1.0%u; = —éz.m

NB : dans les exercices, il faudra exprimer W, T, U, et ug en ; P
fonction des vecteurs de la base fournie.

< Exercice classique : Vérifier que ces expressions concordent avec celles des § A.4.c et § A.5.c sachant que
'(_iR,/R = é.u—z).

NB : L’accélération d’entrailnement est centripéte.

e) Bilan
<o . . Cas ou R’ est en rotation uniforme autour d’un axe
Cas ou R’ est en translation par rapport a R .
(0z) = Afixedans R

QR’/R = QR’/R =
= U_e) = (expression intrinseque)

¢ Ve =1.0.Uy (dans la base cylindrique d’axe (0z))
. a_e) = (expression intrinséeque)
de = a_e) = —7r.6% u_r) (dans la base cylindrique d’axe (0z))
aC = a;) =
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B) Lois de la dynamique du point en référentiel non galiléen

1) Principe d’invariance galiléenne

a) Référentiels galiléens (rappels)

DEFINITION :
Un référentiel galiléen est un référentiel dans lequel le principe d’inertie est vérifié :
tout point matériel isolé ou pseudo-isolé a un mouvement rectiligne uniforme ou reste immobile dans ce
référentiel.
- systéme « isolé » : systéme ne subissant aucune interaction de la part de I'extérieur.
- systeme « pseudo-isolé » : systeme tel que les interactions qu’il subit se compensent.

- mouvement rectiligne uniforme © d = 0.
Conséquence déduite de la loi de composition des vitesses :
Tout référentiel en translation rectiligne uniforme par rapport a un référentiel galiléen est galiléen.

b) Invariance de la 2° loi de Newton / de la loi de la quantité de mouvement (= LQM) / du Principe
Fondamental de la Dynamique (= PFD)

D’aprés la loi de composition des accélérations, la LOM / le PFD est invariant par changement de référentiel
galiléen :
Soit M un point matériel de masse m etudié dans R, un référentiel galiléen quelconque, ona:

ma)(M)/Rg = Z Fext

Avec Y Fé*t |a résultante des forces extérieures exercées sur M.

Rq :

dp(M)
- L’énoncé général de la LQM est (J

) = Y. Fext qvec p(M) g, = mv(M) r_ et dans le cas oir la
dt /Rg ) )

\ dp(M)/Rrg o
masse m du systéme est constante, on a {———— =md(M) g,
/Rg

- Galilée observe que, dans un navire, aucune expérience de mécanique ne permet de distinguer si le navire
est immobile au port ou s’il est en translation rectiligne uniforme : les expériences donnent des résultats
identiques. Par exemple, un corps ldché depuis un mdat tombe toujours au pied du mdt.

2) LQM / PFD dans un référentiel non galiléen — Forces d’inertie
a) Cas général

Soit R un référentiel galiléen et R’ un référentiel non galiléen en mouvement par rapport a R.

Soit M un point matériel de masse m subissant ). Fé*t |a résultante des forces extérieures.
Dans R galiléen, on a:

ma(M) , = Z Fext
La loi de composition des accélérations donne :
a(M) g = d(M)p, +a; + ac

= ma(M) 5, = m(d(M) g = @ — @) = ) F —ma; - ma;
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LQM / PFD: Soit M un point matériel de masse m étudié dans R’ un référentiel non galiléen en
mouvement par rapport a R un référentiel galiléen, ona:

ma(M)/R/ = Z Fext + fie + fic
Avec ). Fé*t |a résultante des forces extérieures exercées sur M
et E et E les forces d’inertie — pseudo-forces, traduisant le caractére non galiléen de R’ :
;,e = -—ma, la FORCE D’INERTIE D’ENTRAINEMENT
f..=—ma; = —2mQy x AD;| laFORCE D’INERTIE DE CORIOLIS

—
& Dans le bilan des forces, on distinguera d’une part les forces « vraies » dont la résultante est ), Fé*t et

d’autre part les pseudo-forces ]T; et ]Tg

Cas particulier : Le systéme est dit en EQUILIBRE RELATIF lorsqu’il est immobile par rapport au référentiel
relatif R’ : v, = (M) g, = 0 et @, = @(M) g, = 0.

—

-
Dans ce cas, la force d’inertie de Coriolis est nulle : f,. = 0.

Pour un systéme en équilibre relatif, ona: ), FEXt + f,, = 0

b) Cas particulier ou R’ est en translation par rapport a R

Soit M un point matériel de masse m étudié dans R’ un référentiel non galiléen en translation par rapport
a R un référentiel galiléen, ona:

ma(M)/R/ = z Fext + fie
Avec ), Fé*t |a résultante des forces extérieures exercées sur M
et f,e = —md(0")  |a force d’inertie d’entrainement.

Ex : Sens de la force d’inertie d’entrainement
Soit un passager assis dans un train dans le sens de la marche. Un livre, de masse m, est posé devant lui sur
la tablette. Le train, initialement a I'arrét, démarre en accélérant. Le passager constate que le livre glisse
sur la tablette.
On étudie le livre dans le référentiel terrestre R galiléen. En négligeant les frottements, le livre est pseudo-
isolé et sa vitesse initiale étant nulle, il est donc immobile dans R. Lors du démarrage du train, dans le
référentiel R’ lié au train, le livre se déplace donc dans le sens inverse du train.
On peut aussi étudier le livre dans le référentiel R’ lié au train en translation par rapport a R le référentiel
terrestre. Selon le plan horizontal, on introduit la force d’inertie d’entrainement :

fo = —ma, = —ma(train) g
Le sens de la force d’inertie d’entrainement est cohérent avec le sens de glissement du livre sur la
tablette : glissement du livre dans le sens inverse du train.

Si le train ralentit, la force d’inertie d’entrainement change de sens. Le livre glisse vers I'avant du train.
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c) Cas particulier ou R’ est en rotation UNIFORME autour d’un axe fixe par rapport a R

Soit M un point matériel de masse m étudié dans R’ un référentiel non galiléen en rotation uniforme
autour d’un axe fixe (0z) = A par rapport a R un référentiel galiléen, on a :

ma)(M)/RI = Z Fext + fle + flC

Avec ). W la résultante des forces extérieures exercées sur M ;
fio = —ma, =m.HM.0%. %, = m.0% HM la force d’inertie d’entrainement
et f,o = —ma, = —ZmS_iRr/R AV, la force d’inertie de Coriolis avec 5R1/R =0.u,
Propriétés :
- f—,‘; est CENTRIFUGE (ou plus précisément axifuge) ;
- ﬁ est orthogonale au vecteur vitesse v,,, elle induit donc une déviation du systéme en mouvement.

/

HQ
ﬁ - fl'(' \/
A | %4 "’,’%/(M)
6
o y

Ex : Soit un plateau sur lequel on dépose une bille. On met le plateau en rotation uniforme autour de son
axe vertical fixe par rapport a R le référentiel terrestre.
On étudie la bille dans le référentiel R’ lié au plateau. Selon le plan horizontal, on introduit la force d’inertie
d’entrainement :

fo = —ma, =m.0%~HM
Le caractere centrifuge de la force d’inertie d’entrainement est cohérent avec le mouvement observé de
la bille dans le référentiel R'.

3) Autres lois de la dynamique du point en référentiel non galiléen, déduites du PFD

[...] = [Soit M un point matériel de masse m étudié dans R’ un référentiel non galiléen en mouvement par
rapport a R un référentiel galiléen.]

a) Théorémes de la puissance et de I’énergie cinétiques

dE
/R1 —
== P+ P(F)m

Avec E. /g, = %m(v(M)/R,)Z I’énergie cinétique du systéme dans R’
Y. Pt g, la puissance des forces extérieures dans R’ : 3, Pt p, = ¥ (Fext . 13(M)/R,)

et ?(ﬁ)/R, la puissance de la force d’inertie d’entrainement dans R'.

NB : La puissance de la force d’inertie de Coriolis E) = —ZmﬁRr/R AV, est nulle dans R’ puisque fz 1.
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TEC:[...]

AE /g = Z Wt g+ W(f )/

Avec AE_ g, la variation d’énergie cinétique dans R’ entre 2 dates (ou 2 positions de M) ;
> We’“/R, le travail des forces extérieures dans R’ entre ces 2 dates ou 2 positions de M

et W(E))/R, le travail de la force d’inertie d’entrainement dans R’ entre ces 2 dates.

b) Théorémes de la puissance et de I’énergie mécaniques

TPM:|...]

dE
/R 7
d—n; = z fpnc/Rl + ?(fle)/Rr

Avec ¥, Py r, la puissance dans R’ des forces extérieures non conservatives
et P(fie)/r la puissance de la force d’inertie d’entrainement dans R’.

TEM:[...]

AEm/RI = z Wnc/RI + W(fle)/Rl

Avec AEy, /g, la variation d’énergie mécanique dans R’ entre 2 dates (ou 2 positions de M) ;
Y. Wye/rs le travail dans R'des forces extérieures non conservatives entre ces 2 dates

et W(ﬁ)/R, le travail de la force d’inertie d’entrainement dans R’ entre ces 2 dates.

NB : On peut déterminer une énergie potentielle dont dérive la force d’inertie d’entrainement, cf TD.

c) Théoréme du moment cinétique

TMC: [...]. Soit un point A FIXE dans R’.

% _ ZMA (Fext) + M a(fre) + M4(foc)

/Rt
Avec a4 (M) g, = AM A mv(M) g, : le moment cinétique de M par rapport a A dans R’ ;

> m (Fext) =) (W A Fext) : le moment des forces extérieures par rapport a A

et m(]—‘;) et WA(E) les moments des forces d’inertie par rapport a A.

NB : On peut également énoncer le TMC par rapport a un axe (Az) fixe dans R’ :

dO- (M) ! — N N
(Azzit /R — ZM(AZ) (Fext) + M(Az)(fle) + M(Az)(fzc)

4) Méthode d’application

@ Préciser le référentiel non galiléen R’ d’étude et son mouvement par

ﬂ* @ Préciser le systéme étudié et sa modélisation : point / solide*.
L rapport a un référentiel R galiléen.

Démarche pour ® Etablir le bilan des forces extérieures subies par le systéme avec un schéma
appliquer une loi de précisant la (ou les) BOND de vecteurs appropriée(s).
dynamique en référentiel | @ Exprimer les forces d’inertie.
non galiléen ® Appliquer une des lois de dynamique. NB : Pour le TMC, s’assurer que le

point A ou I'axe (Az) est fixe dans R'.

* Les lois de dynamique pour un solide étudié en référentiel galiléen vues en 1° année peuvent s’adapter en
référentiel non galiléen en prenant en compte les forces d’inertie.
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C) Caractere galiléen approché des référentiels usuels

Les lois Newton postulent I'existence d’un référentiel galiléen mais n’en donnent explicitement aucun ! Le
seul moyen de vérifier si un référentiel est galiléen est de réaliser des expériences de mécanique et de
vérifier si les observations expérimentales sont compatibles avec les lois de Newton en supposant le
référentiel galiléen. Mais qui dit expérience dit précision expérimentale. Dés lors :

On considérera un référentiel comme galiléen tant qu’on pourra appliquer les lois de Newton, et en
particulier le PFD, sans que les observations expérimentales n’infirment cette hypothése. Autrement dit,
on ne peut affirmer le caractere galiléen d’un référentiel que dans la limite de la précision des mesures
expérimentales.

1) Référentiels usuels (rappels)

Référentiel terrestre Référentiel géocentrique Référentiel de Copernic
Origine P : point de la surface de la | Origine T : centre de la Terre. Origine S : centre de masse du
Terre ou se déroule I'expérience. 3 axes pointant vers des étoiles | systeme solaire, proche du
3 axes fixes par rapport a la Terre. lointaines supposées fixes. centre du Soleil .
(Pzp) axe vertical ascendant 3 axes pointant vers des étoiles
(Pxp) et (Pyp) axes horizontaux lointaines supposées fixes.
(Pxp) ouest—est et (Pyp) sud—nord.
Z Z
yP

2 P
méridien Qi x

& Trajectoire de la Terre autour du Soleil

parallele /..o """"""""""""

Xp

lan équatorial

X

Figure 2.8 — Référentiel terrestre local Figure 2.9 — Référentiel géocentrique et référentiel de Copernic.

" Le centre de masse du systeme solaire est proche du centre du Soleil puisque la masse du Soleil est tres
supérieure 2 celle des planétes (mg ~ 2.103° kg et mypier = 2.10%7 kg).
Ainsi le référentiel de Copernic et le référentiel héliocentrique sont presque identiques.

lLe référentiel de Copernic est considéré galiléen| & condition de se limiter & des mouvements & I'intérieur
du systéme solaire et de durée courte devant la durée caractéristique du mouvement du Soleil dans la
galaxie (230 millions d’années).

Il est adapté pour I’étude du mouvement des planétes / cométes du systéme solaire, ¢f 1° année.
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2) Caractere galiléen approché du référentiel géocentrique

Ce référentiel est adapté pour I'étude du mouvement des satellites (artificiels ou de la Lune) autour de la
Terre, cf 1° année.

a) Mouvement du référentiel géocentrique par rapport au référentiel de Copernic

Soit R le référentiel de Copernic, considéré galiléen, et R; le référentiel géocentrique.

Par rapport a R;, R; est en translation quasi-circulaire uniforme a Ila vitesse angulaire
0w=2010"rad.s™1.

Ainsi, en toute rigueur, le référentiel géocentrique est non galiléen.

< 0ODG : Justifier la valeur de w.

Rq : C’est le caractére non galiléen du référentiel géocentrique qui permet d’expliquer I'existence de deux
marées hautes et deux marées basses par jour dues a l'influence de la Lune.

b) ODG - Approximation

En toute rigueur, pour une étude dans le référentiel géocentrique, il faut rajouter une accélération
d’entrainement de I'ordre de Dw? = 6.1073 m.s72, ou D = 1,5. 10 m est la distance Terre-Soleil.

< Exercice classique : Justifier I'expression de I'accélération d’entrainement.

On peut considérer que le référentiel géocentrique est galiléen a condition de se limiter a des
mouvements de durée courte devant 1 an car sur une telle durée, on peut assimiler le mouvement du
référentiel géocentrique a une translation RECTILIGNE uniforme par rapport au référentiel de Copernic.

3) Caractere galiléen approché du référentiel terrestre

Pour étudier le mouvement d’un objet au voisinage de la surface de la Terre, le référentiel adapté est le
référentiel terrestre Ry. Ry est aussi appelé « référentiel du laboratoire ».

Pour la plupart des expériences classiques, les observations sont compatibles avec une étude théorique ou
le référentiel terrestre Ry est considéré galiléen, cf 1° année.

En revanche, si on regarde trés finement certaines expériences réalisées sur des grandes échelles de temps
ou d’espace, il apparait des écarts notables et quantifiables qui démontrent que Ry n’est pas galiléen.

a) Expériences

¢ Chute des corps — Expérience de Reich (cf TD)
En 1833, Ferdinand Reich réalisa une centaine de lachers de bille d’une hauteur
H = 158 m, sans vitesse initiale, dans un puits de mines a Freiberg (latitude A = 51°).
Si Zr était galiléen, les billes auraient touché le sol a la verticale du point de lacher.
Reich mesura une déviation moyenne de & = 28 mm a I'est de la verticale du point
de lacher.

¢ Pendule de Foucault

En 1851, Léon Foucault fit osciller un immense pendule de masse 28 kg, de longueur
L = 67 m accroché au sommet de la coupole du Panthéon 2 Paris (latitude A = 48°).
Si Zr était galiléen, le pendule aurait oscillé dans un plan vertical fixe. L’expérience
montra que le pendule, une fois laché, oscillait pendant 6 h (a cause de diverses causes
d’amortissement), mais surtout que le plan d’oscillation du pendule n’était pas fixe et
tournait autour de la verticale, a raison de 11° par heure, effet parfaitement mesurable.
Le pendule de Foucault est toujours visible de nos jours dans le Panthéon.
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b) Cause

Soit R le référentiel géocentrique, considéré galiléen (cf § C.2.b : durée d’expérience faible par rapport a 1
an) et R le référentiel terrestre.

Par rapport a R, Ry est en rotation uniforme autour d’un axe fixe, I'axe des poles, a la vitesse angulaire
0=173.10"rad.s 1.

Ainsi, en toute rigueur, le référentiel terrestre est non galiléen.

2 0DG : Justifier la valeur de 6.

c) Force d’inertie d’entrainement : Champ de pesanteur — ODG (cf CCS2 MP 2018)
¢ Le poids P= mg d’un objet M est, par définition, la force opposée a la tension
d’un fil au bout duquel est accroché I'objet, ce dernier étant en équilibre dans le
référentiel terrestre.

< Exercice classique : En déduire que le poids est égal a la somme de la force de
gravitation exercée par la Terre de centre T et de la force d’inertie d’entrainement :

A

Pale Hord

Poids

> . 5 W’ . //hti“lﬂel -~
P=—mgMTm—mae<:>g=—gMTW—ae o -

* 0ODG:
L’accélération d’entrainement est radiale vis-a-vis de |'axe des poles. Elle est maximale au niveau de

I'équateur ou elle a pour intensité : R702 ~ 3.1072 m.s™2, o Ry = 6,4.103 km le rayon de la Terre.

s . . M _
On peut comparer cette valeur au champ gravitationnel au niveau de |'équateur : i—; ~ 10 m.s~2.
T

Ainsi, la force d’inertie d’entrainement est un terme correctif de I'ordre du millieme : le schéma ci-dessus
exagére donc la composante radiale du poids.
< Exercice classique : Justifier I'expression de I’accélération d’entrainement au niveau de I'équateur.

d) Force d’inertie de Coriolis : Influence - ODG
¢ La force d’inertie de Coriolis est responsable :
- de la déviation vers I'est des objets lors d’une chute libre de grande ampleur, cf § a et TD.
- dusens de rotation des masses d’air autour d’une dépression (cyclones).
< Exercice classique : Une dépression se crée en un point. Les vents convergent a grande vitesse
vers ce point. Déterminer les directions et les sens de déviation de ces vents due a la force de
Coriolis selon que le vent vient du nord, du sud, de I'est ou de I'ouest et selon I’"hémisphére ou
apparait la dépression.

Dans I’"hémisphere nord : latitude A >0 Dans I’"hémisphere sud : latitude A< 0
Rotation dans le sens trigonométrique autour Rotation dans le sens horaire autour d’'une
d’une dépression. dépression.

Animation sur :
www.sciences.univ-nantes.fr/sites/qgenevieve tulloue/Meca/RefTerre/Depressions Fl.php
Exemple analogue de déviation dans un référentiel non galiléen : https://cahier-de-prepa.fr/mp-

lafayette/docs?rep=115 vidéo n°3
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¢ ODG : On consideéere un systeme a la surface de la Terre.
- Effets verticaux de la force de Coriolis sur le mouvement décrit dans le référentiel terrestre

Ona ||E|| = mévr
Les effets verticaux de la force de Coriolis sont négligeables ssi ||)T,:|| K ||F||
& miv, K mg & v, K % ~ 1.10°m.s7!

La vitesse du systéme doit donc étre trés élevée pour que les effets verticaux de la force de Coriolis ne
soient pas négligeables sur le mouvement décrit dans le référentiel terrestre.

- Déviation

On note L* et T* la distance et la durée caractéristiques de I'expérience étudiée telles que v, = el

On note L., la distance caractéristique des effets (déviation) de la force de Coriolis telle que ||a; Leor

T*Z *

|
~

Par ailleurs, on a ||a;|| = v, donc Ly, = 6v,T*2.
Les effets (déviation) de I'accélération de Coriolis sont négligeables sur le mouvement décrit dans le
référentiel terrestre ssi Lgo < L*

= v, T L v, T*

1
=>T*<<5z1jour

On peut interpréter ceci en disant que si T* <« 1 jour, alors le mouvement du lieu de I'expérience a décrit,
par rapport au référentiel géocentrique R, un tout petit arc de cercle (centré sur I'axe des pdles), de
maniere uniforme. Ce mouvement peut étre confondu avec une TRANSLATION rectiligne uniforme par
rapport a R; galiléen, permettant ainsi de considérer le référentiel terrestre R comme galiléen.

On peut considérer que le référentiel terrestre est galiléen a condition de se limiter a des mouvements de
faible ampleur (a proximité de la surface terrestre) et de durée courte devant 1 jour.

Annexe 1 — Loi de composition des accélérations dans le cas général

P (e - (T 4 RO, . Dpoacm
= = QA C
Q. , (————-—dt )m de VR v . >/Q

i = — — ot
d b Q. A o BT, o |BA A o' o MO
) \~ de T R A+ 2l + | e / U /3
; R T _
— % y d’.” ey =
— =3 =3 = 4 Qg s - O'M) + Qg i
=8 o+ Ay A 4 (Vg + 2B e T
“ﬁ;’:
: = - = Vors T = -
- Ci:i, + QQQ:’/R AN, 4+ CL(O )/R + dg@;:li,l;\ oM + ,'/{L[\(A’I_Q./‘RAOV\)
\/‘\,‘”ﬂ— U B
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22 — ~ S
(d’“ /R dc /@) o
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Annexe 2 — Exemple pour illustrer la notion de point coincident
Cas oU R’ est en translation par rapporta R :

Le centre 0'd’une roue de vélo de rayon R, avance 2 la vitesse v par rapport au sol.
Un point M de la périphérie de la roue (la valve par exemple) est au contact avec le sol
a I’instant ¢. On étudie son mouvement dans le référentiel Z = (0, x,y,z) lié au sol et
dans le référentiel #' = (0',x,y,z) en translation a la vitesse v par rapport a . Dans
Z', 1a trajectoire du point M est un cercle. Dans Z, elle est plus compliquée, c’est une
cycloide (si la roue ne glisse pas sur le sol) représentée en pointillés sur la figure (1.8) :

ya

Figure 1.8 — Trajectoire de la valve d’'une roue de vélo

Pour faire comprendre ce qu’est le point coincident, on représente sur la figure 1.9, dans
le référentiel Z li€ au sol, les trajectoires :
* du point M pris sur la périphérie de la roue et qui décrit la cycloide

« d’un point P, fixe dans %, situé A une altitude R au dessus du sol et 4 une distance
R en arriére du centre de la roue

« d’un point P fixe dans %', situé a une altitude 2R au dessus du sol et 2 la verticale
du centre de la roue.

AY
P

P]_ 0000000

t=0 f=1h =t
Figure 1.9 — Point coincident.

A T’instant ¢ = O ces trois points sont distincts. Ar= t1, M et P, sont confondus, autre-
ment dit a cet instant la P; est le point coincident de M. De méme a t =, M et P, sont
confondus, c’est-a-dire que P, est le point coincidentde M at = 1;.

{4)
. . ) . . -
Cas ou R’ est en rotation autour d’un axe fixe A par rapporta R : —
Trajectoires dans R des points M;, M, et M5 points fixes dans R’ : My - L‘LU"

Mz a5

Myl 1 '-:Qa'"i:-—
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