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MECANIQUE 

Chapitre M1. Dynamique du point en référentiel non galiléen  

   

INTRO : 
Ce chapitre complète la partie « Mécanique » étudiée en 1e année. Contrairement au temps qui est considéré absolu 
en mécanique classique, le mouvement est relatif i.e. qu’il dépend du référentiel d’étude. En 1e année, les systèmes 
ont été étudiés dans un référentiel galiléen. Cependant, dans certains cas, il est plus judicieux de travailler dans un 
référentiel non galiléen pour étudier le mouvement. 
 
Buts de ce chapitre : Etablir les lois de composition des vitesses et des accélérations ; Enoncer les lois de la dynamique 
du point en référentiel non galiléen ; Décrire les forces d’inertie et citer des manifestations du caractère non galiléen du 
référentiel terrestre.  
 
Prérequis :  
1e année : Cinématique et dynamique du point. 
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Images satellitaires des cyclones Katrina et Idai. 
Katrina a touché le sud-est des Etats-Unis (hémisphère 
nord) en 2005 et Idai le sud-est du continent Africain 
(hémisphère sud) en 2019. 
On constate que le sens de rotation des masses d’air est 
différent : il s’agit d’une manifestation du caractère non 
galiléen du référentiel terrestre qu’on peut interpréter 
comme l’effet d’une pseudo-force : la force d’inertie de 
Coriolis.   
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A) Cinématique 

1) Mouvement d’un référentiel par rapport à un autre – Translation, rotation (rappels) 

Soient ℛ et ℛ′ deux référentiels de repères respectifs (𝑂, 𝑢𝑥⃗⃗⃗⃗ , 𝑢𝑦⃗⃗ ⃗⃗ , 𝑢𝑧⃗⃗⃗⃗ ) et (𝑂′, 𝑢𝑥′⃗⃗ ⃗⃗  ⃗, 𝑢𝑦′⃗⃗ ⃗⃗  ⃗, 𝑢𝑧′⃗⃗ ⃗⃗  ⃗). 

On appelle ℛ le référentiel absolu et ℛ′ est en mouvement par rapport à ℛ, il est appelé référentiel relatif. 
Un référentiel est lié à un solide de référence. Le mouvement d’un solide est caractérisé par son vecteur 
rotation et la vitesse de l’un de ses points. 
Le mouvement de ℛ′ par rapport à ℛ est donc décrit par : 

- 𝑣 (𝑂′)/𝑅 : vitesse de 𝑂’, origine de ℛ′, dans ℛ 

- Ω⃗⃗ 𝑅′/𝑅 : vecteur rotation de ℛ′ par rapport à ℛ 

 

 𝑣 (𝑂′)/𝑅 caractérise un mouvement de translation de ℛ′/ ℛ :  

DEFINITION : 
ℛ′ est en TRANSLATION par rapport à ℛ lorsque les directions du repère lié à ℛ′ restent fixes par rapport 
au référentiel 𝑅. 
Sans perte de généralité, on peut ainsi choisir les axes de ℛ′ parallèles à ceux de ℛ. 
Conséquence : Tous les points fixes dans ℛ′ ont le même mouvement dans ℛ. 
 

ℛ′ est en translation par rapport à ℛ ⟺𝛀⃗⃗ 𝑹′/𝑹 = 𝟎⃗⃗  

 
Ex : 

 

← Translation 
rectiligne 

 

 

← Translation 
quelconque 

↑  
Translation 
circulaire 

 
 
  

A 

B 

A 

B 



ChM1. Référentiels non galiléens 3   MP/MPI La Fayette 

 

 Ω⃗⃗ 𝑅′/𝑅 caractérise un mouvement de rotation de ℛ′/ ℛ :  

On se limite aux rotations autour d’un axe fixe dans ℛ.  

DEFINITION : 
ℛ′ est en ROTATION AUTOUR D’UN AXE Δ FIXE par rapport au référentiel 𝑅, s’il existe 
une unique droite Δ immobile par rapport à ℛ′ et par rapport à 𝑅.  
Conséquence :  
Tous les points fixes dans ℛ′ sont animés dans ℛ d’un mouvement circulaire d’axe Δ et 

de vitesse angulaire 𝜃̇ égale à la vitesse angulaire de rotation de ℛ′autour de Δ. 
En coordonnées cylindriques d’axe (𝑂𝑧) = 𝛥, le vecteur vitesse de 𝑃 est : 

𝑣 (𝑃)/𝑅 = 𝑟. 𝜃̇. 𝑢𝜃⃗⃗ ⃗⃗  

Avec 𝑟 = 𝐻𝑃, 𝐻 étant le projeté orthogonal de 𝑃 sur 𝛥. 

Le vecteur rotation de ℛ′ par rapport à ℛ est :  𝛀⃗⃗ 𝑹′/𝑹 = 𝜽̇. 𝒖𝒛⃗⃗⃗⃗  

   
 
 

2) Mouvements absolu et relatif  

Soient ℛ et ℛ′ deux référentiels que l’on munit de leurs repères respectifs (𝑂, 𝑢𝑥⃗⃗⃗⃗ , 𝑢𝑦⃗⃗ ⃗⃗ , 𝑢𝑧⃗⃗⃗⃗ ) et 

(𝑂′, 𝑢𝑥′⃗⃗ ⃗⃗  ⃗, 𝑢𝑦′⃗⃗ ⃗⃗  ⃗, 𝑢𝑧′⃗⃗ ⃗⃗  ⃗). 

Le mouvement de 𝑴 dans 𝑹 est nommé mouvement absolu. On introduit : 

le vecteur position la vitesse absolue l’accélération absolue 

𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   𝑣𝑎⃗⃗⃗⃗ = 𝑣 (𝑀)/𝑅 = (
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  

𝑑𝑡
)
/𝑅

 𝑎𝑎⃗⃗⃗⃗ = 𝑎 (𝑀)/𝑅 = (
𝑑²𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  

𝑑𝑡²
)
/𝑅

 

 
Le mouvement de 𝑴 dans 𝑹′ est nommé mouvement relatif. On introduit : 

le vecteur position la vitesse relative l’accélération relative 

𝑂′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗  𝑣𝑟⃗⃗  ⃗ = 𝑣 (𝑀)/𝑅′ = (
𝑑𝑂′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗ 

𝑑𝑡
)

/𝑅′

 𝑎𝑟⃗⃗⃗⃗ = 𝑎 (𝑀)/𝑅′ = (
𝑑²𝑂′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗ 

𝑑𝑡²
)

/𝑅′

 

  

Vidéos pour une rotation : https://cahier-de-prepa.fr/mp-lafayette/docs?rep=115 vidéos n°1 et n°2 

← Chaque élément du 
manège est en rotation 
autour de l’axe central 
vertical fixe par rapport 
au référentiel terrestre.  

← Illustrations de changements de référentiel dans les cas 
translation et rotation uniforme d’un référentiel par rapport à 
l’autre. Les lignes visualisées sur les photos correspondent à la 
trajectoire d’un point fixe dans un référentiel, vu depuis l’autre 
référentiel. 
Autre exemple : cf fig.1.8. de l’annexe 2. 
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3) Formule de dérivation vectorielle – Formule de Bour  

a) Position du problème 

Soit 𝐴  un vecteur quelconque qui dépend du temps. On peut le décomposer dans la base de 𝑅 ou dans 

celle de 𝑅′ : 

𝐴 = 𝑥𝑢𝑥⃗⃗⃗⃗ + 𝑦𝑢𝑦⃗⃗ ⃗⃗ + 𝑧𝑢𝑧⃗⃗⃗⃗  

𝐴 = 𝑥′𝑢𝑥′⃗⃗ ⃗⃗  ⃗ + 𝑦′𝑢𝑦′⃗⃗ ⃗⃗  ⃗ + 𝑧′𝑢𝑧′⃗⃗ ⃗⃗  ⃗ 

 On a la dérivée temporelle de 𝐴  dans 𝑅 : 

(
𝑑𝐴 

𝑑𝑡
)
/𝑅

= (
𝑑

𝑑𝑡
(𝑥𝑢𝑥⃗⃗⃗⃗ + 𝑦𝑢𝑦⃗⃗ ⃗⃗ + 𝑧𝑢𝑧⃗⃗⃗⃗ ))

/𝑅

= 𝑥̇𝑢𝑥⃗⃗⃗⃗ + 𝑦̇𝑢𝑦⃗⃗ ⃗⃗ + 𝑧̇𝑢𝑧⃗⃗⃗⃗  

Puisque (𝑢𝑥⃗⃗⃗⃗ , 𝑢𝑦⃗⃗ ⃗⃗ , 𝑢𝑧⃗⃗⃗⃗ ) sont des vecteurs constants dans 𝑅. 

 De même, on a la dérivée temporelle de 𝐴  dans 𝑅′ : 

(
𝑑𝐴 

𝑑𝑡
)
/𝑅′

= (
𝑑

𝑑𝑡
(𝑥′𝑢𝑥′⃗⃗ ⃗⃗  ⃗ + 𝑦′𝑢𝑦′⃗⃗ ⃗⃗  ⃗ + 𝑧′𝑢𝑧′⃗⃗ ⃗⃗  ⃗))

/𝑅′

= 𝑥′̇ 𝑢𝑥′⃗⃗ ⃗⃗  ⃗ + 𝑦′̇ 𝑢𝑦′⃗⃗ ⃗⃗  ⃗ + 𝑧′̇𝑢𝑧′⃗⃗ ⃗⃗  ⃗ 

Puisque (𝑢𝑥′⃗⃗ ⃗⃗  ⃗, 𝑢𝑦′⃗⃗ ⃗⃗  ⃗, 𝑢𝑧′⃗⃗ ⃗⃗  ⃗) sont des vecteurs constants dans 𝑅′. 

 

b) Lien entre les dérivées : formule de Bour 

La formule de Bour donne le lien entre (
𝑑𝐴 

𝑑𝑡
)
/𝑅

et (
𝑑𝐴 

𝑑𝑡
)
/𝑅′

: 

(
𝒅𝑨⃗⃗ 

𝒅𝒕
)
/𝑹

= (
𝒅𝑨⃗⃗ 

𝒅𝒕
)
/𝑹′

+ 𝛀𝑹′/𝑹⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ∧ 𝑨⃗⃗         (∗) 

 

NB : On vérifie la validité de cette relation dans les cas particuliers où : 
 

 𝑅′ en translation par rapport à 𝑅 : 

Dans ce cas, (𝑢𝑥′⃗⃗ ⃗⃗  ⃗, 𝑢𝑦′⃗⃗ ⃗⃗  ⃗, 𝑢𝑧′⃗⃗ ⃗⃗  ⃗) sont constants dans 𝑅 donc (
𝑑𝐴 

𝑑𝑡
)
/𝑅
= (

𝑑𝐴 

𝑑𝑡
)
/𝑅′

. 

Et ceci concorde avec la formule (∗) puisque, dans le cas d’une translation, 

Ω⃗⃗ 𝑅′/𝑅 = 0⃗ . 

 
 

 𝑅′ en rotation autour d’un axe fixe ∆ par rapport à 𝑅 : 

       𝐴 = 𝑥′𝑢𝑥′⃗⃗ ⃗⃗  ⃗ + 𝑦′𝑢𝑦′⃗⃗ ⃗⃗  ⃗ + 𝑧𝑢𝑧⃗⃗⃗⃗   

avec 𝑢𝑥′⃗⃗ ⃗⃗  ⃗ = cos(𝜃) 𝑢𝑥⃗⃗⃗⃗ + sin(𝜃) 𝑢𝑦⃗⃗ ⃗⃗  et 𝑢𝑦′⃗⃗ ⃗⃗  ⃗ = −sin(𝜃) 𝑢𝑥⃗⃗⃗⃗ + cos(𝜃) 𝑢𝑦⃗⃗ ⃗⃗  

    et  Ω⃗⃗ 𝑅′/𝑅 = 𝜃̇. 𝑢𝑧⃗⃗⃗⃗   

𝑥 
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𝑣𝑒⃗⃗  ⃗ 𝑣𝑟⃗⃗  ⃗ 

𝑣𝑎⃗⃗⃗⃗  

4) Loi de composition des vitesses  

a) Cas général 

𝑣 (𝑀)/𝑅 = (
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  

𝑑𝑡
)
/𝑅

= (
𝑑(𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗ + 𝑂′𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ )

𝑑𝑡
)
/𝑅

= (
𝑑𝑂𝑂′⃗⃗ ⃗⃗ ⃗⃗  ⃗

𝑑𝑡
)
/𝑅

+ (
𝑑𝑂′𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 

𝑑𝑡
)
/𝑅

 

(∗)
⇔𝑣 (𝑀)/𝑅 = 𝑣 (𝑂′)/𝑅 + (

𝑑𝑂′𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ 

𝑑𝑡
)
/𝑅′

+ Ω𝑅′/𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧ 𝑂′𝑀⃗⃗⃗⃗⃗⃗ ⃗⃗  

⟺ 𝑣 (𝑀)/𝑅 = 𝑣 (𝑀)/𝑅′ + 𝑣𝑒⃗⃗  ⃗       ⟺       𝒗𝒂⃗⃗ ⃗⃗  = 𝒗𝒓⃗⃗⃗⃗ + 𝒗𝒆⃗⃗⃗⃗  

avec        𝑣𝑒⃗⃗  ⃗ = 𝑣 (𝑂′)/𝑅 + Ω𝑅′/𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧ 𝑂′𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗         la vitesse d'entraînement 

Rq : Représentation de la loi de composition des vitesses par le « triangle des 
vitesses ». 

 
b) Cas particulier où 𝓡′ est en translation par rapport à 𝓡 

 𝒗𝒆⃗⃗⃗⃗ = 𝒗⃗⃗ (𝑶′)/𝑹  

 Exercice classique : On considère un enfant qui marche dans un train. Sa vitesse vue depuis le sol 
correspond à sa vitesse dans le train additionnée à la vitesse du train par rapport au sol : 

𝑣 (𝑒𝑛𝑓𝑎𝑛𝑡)/𝑠𝑜𝑙⏟        
𝑣𝑎⃗⃗ ⃗⃗  

= 𝑣 (𝑒𝑛𝑓𝑎𝑛𝑡)/𝑡𝑟𝑎𝑖𝑛⏟          
𝑣𝑟⃗⃗⃗⃗ 

+ 𝑣 (𝑡𝑟𝑎𝑖𝑛)/𝑠𝑜𝑙⏟        
𝑣𝑒⃗⃗⃗⃗ 

 

Que vaut 𝑣 (𝑒𝑛𝑓𝑎𝑛𝑡)/𝑡𝑟𝑎𝑖𝑛 lorsque l’enfant est vu immobile depuis le quai ? 

 
Autre exemple de composition des vitesses dans le cas translation :  
Un bateau traverse une rivière.  
On note 𝑣𝑒𝑎𝑢 la vitesse du courant et 𝑣𝑏 la norme du vecteur 
vitesse du bateau par rapport à la rivière. 
 
 
 
 
 
c) Cas particulier où 𝓡′ est en rotation autour d’un axe fixe ∆ par rapport à 𝓡 

On choisit (𝑶𝒛) = 𝜟 

 𝒗𝒆⃗⃗⃗⃗ = 𝛀⃗⃗ 𝑹′/𝑹 ∧ 𝑶𝑴⃗⃗⃗⃗⃗⃗  ⃗ 

 Exercice classique : Dans le cas où ℛ′ est en rotation autour de ∆= (𝑂𝑧) par rapport à ℛ, vérifier qu’on 

peut écrire 𝑣𝑒⃗⃗  ⃗ = 𝑣 (𝑂′)/𝑅 + Ω𝑅′/𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧ 𝑂′𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗  sous la forme 𝑣𝑒⃗⃗  ⃗ = Ω⃗⃗ 𝑅′/𝑅 ∧ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  . 

 
Ex : 
On considère un enfant qui marche dans un manège. Sa vitesse vue depuis le sol 
correspond à sa vitesse dans le manège additionnée à la vitesse d’entraînement : 

𝑣 (𝑒𝑛𝑓𝑎𝑛𝑡)/𝑠𝑜𝑙⏟        
𝑣𝑎⃗⃗ ⃗⃗  

= 𝑣 (𝑒𝑛𝑓𝑎𝑛𝑡)/𝑚𝑎𝑛è𝑔𝑒⏟            
𝑣𝑟⃗⃗⃗⃗ 

+ 𝛀⃗⃗ 𝒎𝒂𝒏è𝒈𝒆/𝒔𝒐𝒍 ∧ 𝑶𝑴⃗⃗⃗⃗⃗⃗  ⃗⏟            
𝑣𝑒⃗⃗⃗⃗ 

 

On a 𝑣𝑒⃗⃗  ⃗ = 𝑟. 𝜃̇. 𝑢𝜃⃗⃗ ⃗⃗  en coordonnées cylindriques (cf § A.4.d) avec  Ω⃗⃗ 𝑚𝑎𝑛è𝑔𝑒/𝑠𝑜𝑙 = 𝜃̇. 𝑢𝑧⃗⃗⃗⃗  
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5) Loi de composition des accélérations  

a) Cas général (expression générale de 𝑎𝑒⃗⃗⃗⃗   hors programme en annexe) 

𝑎 (𝑀)/𝑅 = 𝑎 (𝑀)/𝑅′ + 𝑎𝑒⃗⃗⃗⃗ + 𝑎𝑐⃗⃗⃗⃗       ⟺      𝒂𝒂⃗⃗ ⃗⃗  = 𝒂𝒓⃗⃗⃗⃗ + 𝒂𝒆⃗⃗⃗⃗ + 𝒂𝒄⃗⃗⃗⃗  

avec        𝑎𝑒⃗⃗⃗⃗      l'accélération  d'entraînement 

𝑒𝑡          𝑎𝑐⃗⃗⃗⃗ = 2Ω⃗⃗ 𝑅′/𝑅 ∧ 𝑣𝑟⃗⃗  ⃗        l'accélération  de Coriolis 

 

b) Preuve pour le cas où 𝓡′ est en translation par rapport à 𝓡 

𝑎𝑎⃗⃗⃗⃗ = 𝑎 (𝑀)/𝑅 = (
𝑑𝑣𝑎⃗⃗⃗⃗ 

𝑑𝑡
)
/𝑅

= (
𝑑𝑣𝑟⃗⃗  ⃗

𝑑𝑡
)
/𝑅

+ (
𝑑𝑣 (𝑂′)/𝑅

𝑑𝑡
)
/𝑅

 

Ω⃗⃗ 𝑅′/𝑅 = 0⃗  
(∗)
⇒ (

𝑑𝑣𝑟⃗⃗  ⃗

𝑑𝑡
)
/𝑅

= (
𝑑𝑣𝑟⃗⃗  ⃗

𝑑𝑡
)
/𝑅′

= 𝑎𝑟⃗⃗⃗⃗  

⟹ 𝑎𝑎⃗⃗⃗⃗ = 𝑎𝑟⃗⃗⃗⃗ + 𝑎 (𝑂′)/𝑅 

avec    l'accélération d'entraînement :    𝒂𝒆⃗⃗⃗⃗ = 𝒂⃗⃗ (𝑶′)/𝑹          

et    l'accélération de Coriolis :    𝒂𝒄⃗⃗⃗⃗ = 𝟎⃗⃗          

A retenir : Lorsque ℛ′ est en translation par rapport à ℛ, l’accélération de Coriolis est nulle. 

 

c) Preuve pour le cas où 𝓡′ est en rotation UNIFORME autour d’un axe fixe par rapport à 𝓡 

On choisit (𝑶𝒛) = 𝜟 

Ω⃗⃗ 𝑅′/𝑅 = 𝜃̇. 𝑢𝑧⃗⃗⃗⃗ = 𝑐𝑠𝑡⃗⃗ ⃗⃗  ⃗ 

𝑎𝑎⃗⃗⃗⃗ = 𝑎 (𝑀)/𝑅 = (
𝑑𝑣𝑎⃗⃗⃗⃗ 

𝑑𝑡
)
/𝑅

= (
𝑑𝑣𝑟⃗⃗  ⃗

𝑑𝑡
)
/𝑅

+ (
𝑑(Ω⃗⃗ 𝑅′/𝑅 ∧ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  )

𝑑𝑡
)

/𝑅

 

(
𝑑𝑣𝑟⃗⃗  ⃗

𝑑𝑡
)
/𝑅

= (
𝑑𝑣𝑟⃗⃗  ⃗

𝑑𝑡
)
/𝑅′

+ Ω⃗⃗ 𝑅′/𝑅 ∧ 𝑣𝑟⃗⃗  ⃗ = 𝑎𝑟⃗⃗⃗⃗ + Ω⃗⃗ 𝑅′/𝑅 ∧ 𝑣𝑟⃗⃗  ⃗ 

(
𝑑(Ω⃗⃗ 𝑅′/𝑅 ∧ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  )

𝑑𝑡
)

/𝑅

= Ω⃗⃗ 𝑅′/𝑅 ∧ (
𝑑𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  

𝑑𝑡
)
/𝑅

= Ω⃗⃗ 𝑅′/𝑅 ∧ (𝑣𝑟⃗⃗  ⃗ + Ω⃗⃗ 𝑅′/𝑅 ∧ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ) 

𝑎 (𝑀)/𝑅 = 𝑎 (𝑀)/𝑅′ + Ω⃗⃗ 𝑅′/𝑅 ∧ (Ω⃗⃗ 𝑅′/𝑅 ∧ 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  ) + 2Ω⃗⃗ 𝑅′/𝑅 ∧ 𝑣𝑟⃗⃗  ⃗       ⟺       𝒂𝒂⃗⃗ ⃗⃗  = 𝒂𝒓⃗⃗⃗⃗ + 𝒂𝒆⃗⃗⃗⃗ + 𝒂𝒄⃗⃗⃗⃗  

avec    l'accélération d'entraînement :    𝒂𝒆⃗⃗⃗⃗ = 𝛀⃗⃗ 𝑹′/𝑹 ∧ (𝛀⃗⃗ 𝑹′/𝑹 ∧ 𝑶𝑴⃗⃗⃗⃗⃗⃗  ⃗)         

et    l'accélération de Coriolis :    𝒂𝒄⃗⃗⃗⃗ = 𝟐𝛀⃗⃗ 𝑹′/𝑹 ∧ 𝒗𝒓⃗⃗⃗⃗   
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d) Point coïncident 

DEFINITION : 
Le POINT COÏNCIDENT 𝐶 est le point confondu géométriquement avec le point 𝑀 à l’instant 𝑡 et fixe dans 
le référentiel ℛ′ . 

Ex : cf fig.1.9 de l’annexe 2  
 
Appliquons la loi de composition des vitesses au point coïncident : 

𝑣 (𝐶)/𝑅 = 𝑣 (𝐶)/𝑅′ + 𝑣 (𝑂′)/𝑅 + Ω𝑅′/𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧ 𝑂′𝐶⃗⃗⃗⃗⃗⃗  ⃗ = 0⃗ + 𝑣 (𝑂′)/𝑅 + Ω𝑅′/𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∧ 𝑂′𝑀⃗⃗⃗⃗ ⃗⃗ ⃗⃗ = 𝑣𝑒⃗⃗  ⃗ 

La vitesse d’entraînement correspond donc à la vitesse du point coïncident 𝑪 dans 𝑹. 
De même, l’accélération d’entraînement correspond à l’accélération du point coïncident dans 𝑹. 

Il est intéressant d’utiliser ces résultats dans le cas où 𝓡′ est en 

rotation uniforme autour de (𝑶𝒛) = 𝜟 fixe par rapport à 𝓡  car 
cela permet de calculer facilement la vitesse et l’accélération 
d’entraînement.  

𝐶 décrit un cercle d’axe (𝑂𝑧) à la vitesse angulaire constante 𝜃̇. 
En coordonnées cylindriques d’axe (𝑂𝑧) = 𝛥, avec 𝑟 = 𝐻𝑀, 𝐻 
étant le projeté orthogonal de 𝑴 sur 𝜟 à 𝒕, on a : 

𝑣𝑒⃗⃗  ⃗ = 𝑣 (𝐶)/𝑅 = 𝑟. 𝜃̇. 𝑢𝜃⃗⃗ ⃗⃗  

⟺ 𝒗𝒆⃗⃗⃗⃗ = 𝒓. 𝜽̇. 𝒖𝜽⃗⃗ ⃗⃗   

𝑎𝑒⃗⃗⃗⃗ = 𝑎 (𝐶)/𝑅 = −𝑟. 𝜃2̇. 𝑢𝑟⃗⃗⃗⃗  

⟺ 𝒂𝒆⃗⃗⃗⃗ = −𝒓. 𝜽𝟐̇. 𝒖𝒓⃗⃗⃗⃗ = −𝜽𝟐̇. 𝑯𝑴⃗⃗⃗⃗ ⃗⃗  ⃗ 

NB : dans les exercices, il faudra exprimer 𝐻𝑀⃗⃗⃗⃗⃗⃗  ⃗, 𝑟, 𝑢𝑟⃗⃗⃗⃗  et 𝑢𝜃⃗⃗ ⃗⃗  en 
fonction des vecteurs de la base fournie.    

 Exercice classique : Vérifier que ces expressions concordent avec celles des § A.4.c et § A.5.c sachant que 

 Ω⃗⃗ 𝑅′/𝑅 = 𝜃̇. 𝑢𝑧⃗⃗⃗⃗ . 

 
NB : L’accélération d’entraînement est centripète. 
 

e) Bilan 

Cas où 𝑅’ est en translation par rapport à 𝑅 
Cas où 𝑅’ est en rotation uniforme autour d’un axe  

(𝑂𝑧) = 𝛥 fixe dans 𝑅 

Ω⃗⃗ 𝑅′/𝑅 = Ω⃗⃗ 𝑅′/𝑅 =  

𝑣𝑒⃗⃗  ⃗ = 
𝑣𝑒⃗⃗  ⃗ =                                         (expression intrinsèque) 

𝑣𝑒⃗⃗  ⃗ = 𝑟. 𝜃̇. 𝑢𝜃⃗⃗ ⃗⃗                (dans la base cylindrique d’axe (𝑂𝑧))      

𝑎𝑒⃗⃗⃗⃗ =  
 
𝑎𝑐⃗⃗⃗⃗ =  
 

𝑎𝑒⃗⃗⃗⃗ =                                         (expression intrinsèque) 

𝑎𝑒⃗⃗⃗⃗ = −𝑟. 𝜃²̇. 𝑢𝑟⃗⃗⃗⃗           (dans la base cylindrique d’axe (𝑂𝑧))  
     
𝑎𝑐⃗⃗⃗⃗ =  
 

 

Situation à 𝑡 : 
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B) Lois de la dynamique du point en référentiel non galiléen 

1) Principe d’invariance galiléenne 

a) Référentiels galiléens (rappels) 

DEFINITION : 
Un référentiel galiléen est un référentiel dans lequel le principe d’inertie est vérifié : 
tout point matériel isolé ou pseudo-isolé a un mouvement rectiligne uniforme ou reste immobile dans ce 
référentiel. 
   - système « isolé » : système ne subissant aucune interaction de la part de l’extérieur. 
   - système « pseudo-isolé » : système tel que les interactions qu’il subit se compensent. 

   - mouvement rectiligne uniforme ⇔ 𝒂⃗⃗ = 𝟎⃗⃗ . 
Conséquence déduite de la loi de composition des vitesses : 
Tout référentiel en translation rectiligne uniforme par rapport à un référentiel galiléen est galiléen. 

 

b) Invariance de la 2e loi de Newton / de la loi de la quantité de mouvement (= LQM) / du Principe 
Fondamental de la Dynamique (= PFD) 

D’après la loi de composition des accélérations, la LQM / le PFD est invariant par changement de référentiel 
galiléen : 
Soit 𝑀 un point matériel de masse 𝑚 étudié dans 𝑅𝑔 un référentiel galiléen quelconque, on a : 

𝒎𝒂⃗⃗ (𝑴)/𝑹𝒈 =∑𝑭𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

Avec ∑𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   la résultante des forces extérieures exercées sur 𝑀. 

 
Rq :  

- L’énoncé général de la LQM est (
𝒅𝒑⃗⃗ (𝑴)/𝑹𝒈

𝒅𝒕
)
/𝑹𝒈

= ∑𝑭𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   avec 𝒑⃗⃗ (𝑴)/𝑹𝒈 = 𝒎𝒗⃗⃗ (𝑴)/𝑹𝒈 et dans le cas où la 

masse 𝑚 du système est constante, on a (
𝑑𝑝 (𝑀)/𝑅𝑔

𝑑𝑡
)
/𝑅𝑔

= 𝑚𝑎 (𝑀)/𝑅𝑔. 

- Galilée observe que, dans un navire, aucune expérience de mécanique ne permet de distinguer si le navire 
est immobile au port ou s’il est en translation rectiligne uniforme : les expériences donnent des résultats 
identiques. Par exemple, un corps lâché depuis un mât tombe toujours au pied du mât.  
 
 
 

2) LQM / PFD dans un référentiel non galiléen – Forces d’inertie 

a) Cas général 

Soit ℛ un référentiel galiléen et ℛ′ un référentiel non galiléen en mouvement par rapport à ℛ. 

Soit M un point matériel de masse 𝑚 subissant ∑𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   la résultante des forces extérieures. 
Dans ℛ galiléen, on a : 

𝑚𝑎 (𝑀)/𝑅 =∑𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

La loi de composition des accélérations donne : 
𝑎 (𝑀)/𝑅 = 𝑎 (𝑀)/𝑅′ + 𝑎𝑒⃗⃗⃗⃗ + 𝑎𝑐⃗⃗⃗⃗  

⟹𝑚𝑎 (𝑀)/𝑅′ = 𝑚(𝑎 (𝑀)/𝑅 − 𝑎𝑒⃗⃗⃗⃗ − 𝑎𝑐⃗⃗⃗⃗ ) =∑𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑚𝑎𝑒⃗⃗⃗⃗ − 𝑚𝑎𝑐⃗⃗⃗⃗  
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LQM / PFD : Soit 𝑀 un point matériel de masse 𝑚 étudié dans 𝑅′ un référentiel non galiléen en 
mouvement par rapport à ℛ un référentiel galiléen, on a : 

𝒎𝒂⃗⃗ (𝑴)/𝑹′ =∑𝑭𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗ + 𝒇𝒊𝒄⃗⃗⃗⃗  ⃗ 

     Avec ∑𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   la résultante des forces extérieures exercées sur 𝑀  

          et 𝑓𝑖𝑒⃗⃗⃗⃗  et 𝑓𝑖𝑐⃗⃗⃗⃗  les forces d’inertie – pseudo-forces, traduisant le caractère non galiléen de 𝑹′ : 

𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗ = −𝒎𝒂𝒆⃗⃗⃗⃗                            la FORCE D’INERTIE D’ENTRAINEMENT 

𝒇𝒊𝒄⃗⃗⃗⃗  ⃗ = −𝒎𝒂𝒄⃗⃗⃗⃗ = −𝟐𝒎𝛀⃗⃗ 𝑹′/𝑹 ∧ 𝒗𝒓⃗⃗⃗⃗   la FORCE D’INERTIE DE CORIOLIS 

 Dans le bilan des forces, on distinguera d’une part les forces « vraies » dont la résultante est ∑𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   et 

d’autre part les pseudo-forces 𝑓𝑖𝑒⃗⃗⃗⃗  et 𝑓𝑖𝑐⃗⃗⃗⃗ . 

 

 

Cas particulier : Le système est dit en EQUILIBRE RELATIF lorsqu’il est immobile par rapport au référentiel 

relatif 𝓡′ : 𝒗𝒓⃗⃗⃗⃗ = 𝒗⃗⃗ (𝑴)/𝑹′ = 𝟎⃗⃗  et 𝒂𝒓⃗⃗⃗⃗ = 𝒂⃗⃗ (𝑴)/𝑹′ = 𝟎⃗⃗ . 

Dans ce cas, la force d’inertie de Coriolis est nulle : 𝒇𝒊𝒄⃗⃗⃗⃗  ⃗ = 𝟎⃗⃗ . 

Pour un système en équilibre relatif, on a : ∑𝑭𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗ = 𝟎⃗⃗  
 

 

b) Cas particulier où 𝓡′ est en translation par rapport à 𝓡 

Soit 𝑀 un point matériel de masse 𝑚 étudié dans 𝑅′ un référentiel non galiléen en translation par rapport 
à 𝑅 un référentiel galiléen, on a : 

𝒎𝒂⃗⃗ (𝑴)/𝑹′ =∑𝑭𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗ 

    Avec ∑𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   la résultante des forces extérieures exercées sur 𝑀  

          et 𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗ = −𝒎𝒂⃗⃗ (𝑶′)/𝑹 la force d’inertie d’entraînement. 

 
Ex : Sens de la force d’inertie d’entraînement 
Soit un passager assis dans un train dans le sens de la marche. Un livre, de masse 𝑚, est posé devant lui sur 
la tablette. Le train, initialement à l’arrêt, démarre en accélérant. Le passager constate que le livre glisse 
sur la tablette. 
On étudie le livre dans le référentiel terrestre 𝑅 galiléen. En négligeant les frottements, le livre est pseudo-
isolé et sa vitesse initiale étant nulle, il est donc immobile dans 𝑅. Lors du démarrage du train, dans le 
référentiel 𝑅′ lié au train, le livre se déplace donc dans le sens inverse du train. 
On peut aussi étudier le livre dans le référentiel 𝑅′ lié au train en translation par rapport à 𝑅 le référentiel 
terrestre. Selon le plan horizontal, on introduit la force d’inertie d’entraînement : 

𝑓𝑖𝑒⃗⃗⃗⃗ = −𝑚𝑎𝑒⃗⃗⃗⃗ = −𝑚𝑎(𝑡𝑟𝑎𝑖𝑛)/𝑅⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   

Le sens de la force d’inertie d’entraînement est cohérent avec le sens de glissement du livre sur la 
tablette : glissement du livre dans le sens inverse du train.  

Si le train ralentit, la force d’inertie d’entraînement change de sens. Le livre glisse vers l’avant du train. 
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c) Cas particulier où 𝓡′ est en rotation UNIFORME autour d’un axe fixe par rapport à 𝓡 

Soit 𝑀 un point matériel de masse 𝑚 étudié dans 𝑅′ un référentiel non galiléen en rotation uniforme 
autour d’un axe fixe (𝑂𝑧) = 𝛥 par rapport à 𝑅 un référentiel galiléen, on a : 

𝒎𝒂⃗⃗ (𝑴)/𝑹′ =∑𝑭𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  + 𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗ + 𝒇𝒊𝒄⃗⃗⃗⃗  ⃗ 

Avec ∑𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   la résultante des forces extérieures exercées sur 𝑀 ;  

          𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗ = −𝒎𝒂𝒆⃗⃗⃗⃗ = 𝒎.𝑯𝑴.𝜽𝟐̇. 𝒖𝒓⃗⃗⃗⃗ = 𝒎. 𝜽²̇. 𝑯𝑴⃗⃗⃗⃗ ⃗⃗  ⃗  la force d’inertie d’entraînement 

     et 𝒇𝒊𝒄⃗⃗⃗⃗  ⃗ = −𝒎𝒂𝒄⃗⃗⃗⃗ = −𝟐𝒎𝛀⃗⃗ 𝑹′/𝑹 ∧ 𝒗𝒓⃗⃗⃗⃗  la force d’inertie de Coriolis avec  𝛀⃗⃗ 𝑹′/𝑹 = 𝜽̇. 𝒖𝒛⃗⃗⃗⃗  

Propriétés : 

- 𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗ est CENTRIFUGE (ou plus précisément axifuge) ; 

- 𝒇𝒊𝒄⃗⃗⃗⃗  ⃗ est orthogonale au vecteur vitesse 𝑣𝑟⃗⃗  ⃗, elle induit donc une déviation du système en mouvement. 

 
 

Ex : Soit un plateau sur lequel on dépose une bille. On met le plateau en rotation uniforme autour de son 
axe vertical fixe par rapport à 𝑅 le référentiel terrestre.  
On étudie la bille dans le référentiel 𝑅′ lié au plateau. Selon le plan horizontal, on introduit la force d’inertie 
d’entraînement : 

𝑓𝑖𝑒⃗⃗⃗⃗ = −𝑚𝑎𝑒⃗⃗⃗⃗ = 𝑚. 𝜃²̇. 𝐻𝑀⃗⃗⃗⃗⃗⃗  ⃗ 
Le caractère centrifuge de la force d’inertie d’entraînement est cohérent avec le mouvement observé de 
la bille dans le référentiel 𝑹′.  
 
 

3) Autres lois de la dynamique du point en référentiel non galiléen, déduites du PFD 

[… ] = [Soit 𝑀 un point matériel de masse 𝑚 étudié dans 𝑅′ un référentiel non galiléen en mouvement par 
rapport à ℛ un référentiel galiléen.] 

a) Théorèmes de la puissance et de l’énergie cinétiques 

TPC : [… ] 

𝒅𝑬𝒄/𝑹′

𝒅𝒕
=∑𝓟𝒆𝒙𝒕/𝑹′ +𝓟(𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗)/𝑹′ 

Avec 𝐸𝑐/𝑅′ =
1

2
𝑚(𝑣(𝑀)/𝑅′)

2
 l’énergie cinétique du système dans 𝑹′ 

         ∑𝒫𝑒𝑥𝑡/𝑅′ la puissance des forces extérieures dans 𝑹′ : ∑𝒫𝑒𝑥𝑡/𝑅′ = ∑(𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ 𝑣 (𝑀)/𝑅′) 

    et 𝒫(𝑓𝑖𝑒⃗⃗⃗⃗ )/𝑅′ la puissance de la force d’inertie d’entraînement dans 𝑹′. 

NB : La puissance de la force d’inertie de Coriolis 𝑓𝑖𝑐⃗⃗⃗⃗ = −2𝑚Ω⃗⃗ 𝑅′/𝑅 ∧ 𝑣𝑟⃗⃗  ⃗ est nulle dans 𝑅′ puisque 𝑓𝑖𝑐⃗⃗⃗⃗ ⊥ 𝑣𝑟⃗⃗  ⃗. 
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TEC : [… ] 

∆𝑬𝒄/𝑹′ =∑𝑾𝒆𝒙𝒕
/𝑹′ +𝑾(𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗)/𝑹′  

Avec ∆𝐸𝑐/𝑅′ la variation d’énergie cinétique dans 𝑅′ entre 2 dates (ou 2 positions de 𝑀) ; 

         ∑𝑊𝑒𝑥𝑡
/𝑅′ le travail des forces extérieures dans 𝑹′ entre ces 2 dates ou 2 positions de 𝑀  

    et 𝑊(𝑓𝑖𝑒⃗⃗⃗⃗ )/𝑅′ le travail de la force d’inertie d’entraînement dans 𝑹′ entre ces 2 dates. 

 
b) Théorèmes de la puissance et de l’énergie mécaniques 

TPM : [… ] 

𝒅𝑬𝒎/𝑹′

𝒅𝒕
=∑𝓟𝒏𝒄/𝑹′ +𝓟(𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗)/𝑹′ 

Avec ∑𝒫𝑛𝑐/𝑅′ la puissance dans 𝑹′ des forces extérieures non conservatives 

    et 𝒫(𝑓𝑖𝑒⃗⃗⃗⃗ )/𝑅′ la puissance de la force d’inertie d’entraînement dans 𝑹′. 

 

TEM : [… ] 

∆𝑬𝒎/𝑹′ =∑𝑾𝒏𝒄/𝑹′ +𝑾(𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗)/𝑹′  

Avec ∆𝐸𝑚/𝑅′ la variation d’énergie mécanique dans 𝑅′ entre 2 dates (ou 2 positions de M) ; 

         ∑𝑊𝑛𝑐/𝑅′ le travail dans 𝑹′des forces extérieures non conservatives entre ces 2 dates  

    et 𝑊(𝑓𝑖𝑒⃗⃗⃗⃗ )/𝑅′ le travail de la force d’inertie d’entraînement dans 𝑹′ entre ces 2 dates. 

NB : On peut déterminer une énergie potentielle dont dérive la force d’inertie d’entraînement, cf TD. 
 
c) Théorème du moment cinétique 

TMC : [… ]. Soit un point 𝑨 FIXE dans 𝑹′. 

(
𝒅𝝈𝑨(𝑴)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗

/𝑹′

𝒅𝒕
)

/𝑹′

=∑𝓜𝑨
⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝑭𝒆𝒙𝒕⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) +𝓜𝑨

⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒇𝒊𝒆⃗⃗ ⃗⃗  ⃗) +𝓜𝑨
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝒇𝒊𝒄⃗⃗⃗⃗  ⃗) 

Avec 𝜎𝐴(𝑀)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
/𝑅′ = 𝐴𝑀⃗⃗⃗⃗ ⃗⃗  ∧ 𝑚𝑣 (𝑀)/𝑅′ : le moment cinétique de 𝑀 par rapport à 𝐴 dans 𝑅′ ; 

         ∑ℳ𝐴
⃗⃗ ⃗⃗ ⃗⃗  (𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) = ∑(𝐴𝑀⃗⃗⃗⃗ ⃗⃗  ∧ 𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )  : le moment des forces extérieures par rapport à 𝐴  

   et ℳ𝐴
⃗⃗ ⃗⃗ ⃗⃗  (𝑓𝑖𝑒⃗⃗⃗⃗ ) et ℳ𝐴

⃗⃗ ⃗⃗ ⃗⃗  (𝑓𝑖𝑐⃗⃗⃗⃗ ) les moments des forces d’inertie par rapport à 𝐴. 

NB : On peut également énoncer le TMC par rapport à un axe (𝐴𝑧) fixe dans 𝑅′ : 
𝑑𝜎(𝐴𝑧)(𝑀)/𝑅′

𝑑𝑡
=∑ℳ(𝐴𝑧) (𝐹𝑒𝑥𝑡⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) +ℳ(𝐴𝑧)(𝑓𝑖𝑒⃗⃗⃗⃗ ) +ℳ(𝐴𝑧)(𝑓𝑖𝑐⃗⃗⃗⃗ ) 

 

4) Méthode d’application 

 
Démarche pour 

appliquer une loi de 
dynamique en référentiel 

non galiléen 

 Préciser le système étudié et sa modélisation : point / solide*. 
 Préciser le référentiel non galiléen ℛ′ d’étude et son mouvement par 
rapport à un référentiel 𝑅 galiléen. 
 Etablir le bilan des forces extérieures subies par le système avec un schéma 
précisant la (ou les) BOND de vecteurs appropriée(s). 
 Exprimer les forces d’inertie. 
 Appliquer une des lois de dynamique. NB : Pour le TMC, s’assurer que le 
point 𝐴 ou l’axe (𝐴𝑧) est fixe dans 𝑹′. 

* Les lois de dynamique pour un solide étudié en référentiel galiléen vues en 1e année peuvent s’adapter en 
référentiel non galiléen en prenant en compte les forces d’inertie. 
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C) Caractère galiléen approché des référentiels usuels 
Les lois Newton postulent l’existence d’un référentiel galiléen mais n’en donnent explicitement aucun ! Le 
seul moyen de vérifier si un référentiel est galiléen est de réaliser des expériences de mécanique et de 
vérifier si les observations expérimentales sont compatibles avec les lois de Newton en supposant le 
référentiel galiléen. Mais qui dit expérience dit précision expérimentale. Dès lors : 

On considérera un référentiel comme galiléen tant qu’on pourra appliquer les lois de Newton, et en 
particulier le PFD, sans que les observations expérimentales n’infirment cette hypothèse. Autrement dit, 
on ne peut affirmer le caractère galiléen d’un référentiel que dans la limite de la précision des mesures 
expérimentales. 

 

1) Référentiels usuels (rappels) 

Référentiel terrestre Référentiel géocentrique Référentiel de Copernic 
Origine 𝑃 : point de la surface de la 
Terre où se déroule l’expérience. 
3 axes fixes par rapport à la Terre. 
(𝑃𝑧𝑃) axe vertical ascendant 
(𝑃𝑥𝑃) et (𝑃𝑦𝑃) axes horizontaux 
(𝑃𝑥𝑃) ouest→est et (𝑃𝑦𝑃) sud→nord. 

Origine 𝑇 : centre de la Terre. 
3 axes pointant vers des étoiles 
lointaines supposées fixes. 
 

Origine 𝑆 : centre de masse du 
système solaire, proche du 
centre du Soleil*. 
3 axes pointant vers des étoiles 
lointaines supposées fixes. 
 

  
* Le centre de masse du système solaire est proche du centre du Soleil puisque la masse du Soleil est très 
supérieure à celle des planètes (𝑚𝑆 ≈ 2. 10

30 𝑘𝑔 et 𝑚𝐽𝑢𝑝𝑖𝑡𝑒𝑟 ≈ 2. 10
27 𝑘𝑔). 

Ainsi le référentiel de Copernic et le référentiel héliocentrique sont presque identiques.  
 

Le référentiel de Copernic est considéré galiléen à condition de se limiter à des mouvements à l’intérieur 

du système solaire et de durée courte devant la durée caractéristique du mouvement du Soleil dans la 
galaxie (230 millions d’années). 
Il est adapté pour l’étude du mouvement des planètes / comètes du système solaire, cf 1e année. 
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2) Caractère galiléen approché du référentiel géocentrique  

Ce référentiel est adapté pour l’étude du mouvement des satellites (artificiels ou de la Lune) autour de la 
Terre, cf 1e année. 
 
a) Mouvement du référentiel géocentrique par rapport au référentiel de Copernic 
Soit 𝑅𝐶  le référentiel de Copernic, considéré galiléen, et 𝑅𝐺  le référentiel géocentrique. 
Par rapport à 𝑅𝐶 , 𝑅𝐺  est en translation quasi-circulaire uniforme à la vitesse angulaire 

𝝎 = 𝟐, 𝟎. 𝟏𝟎−𝟕 𝒓𝒂𝒅. 𝒔−𝟏. 
Ainsi, en toute rigueur, le référentiel géocentrique est non galiléen. 
 ODG : Justifier la valeur de 𝜔. 

Rq : C’est le caractère non galiléen du référentiel géocentrique qui permet d’expliquer l’existence de deux 
marées hautes et deux marées basses par jour dues à l’influence de la Lune. 
 
b) ODG - Approximation 
En toute rigueur, pour une étude dans le référentiel géocentrique, il faut rajouter une accélération 
d’entraînement de l’ordre de 𝐷𝜔² ≈ 6. 10−3 𝑚. 𝑠−2, où 𝐷 = 1,5. 1011 𝑚 est la distance Terre-Soleil.  
 Exercice classique : Justifier l’expression de l’accélération d’entraînement.  

On peut considérer que le référentiel géocentrique est galiléen à condition de se limiter à des 
mouvements de durée courte devant 1 an car sur une telle durée, on peut assimiler le mouvement du 
référentiel géocentrique à une translation RECTILIGNE uniforme par rapport au référentiel de Copernic. 

 
 

3) Caractère galiléen approché du référentiel terrestre 

Pour étudier le mouvement d’un objet au voisinage de la surface de la Terre, le référentiel adapté est le 
référentiel terrestre 𝑅𝑇. 𝑅𝑇 est aussi appelé « référentiel du laboratoire ». 
Pour la plupart des expériences classiques, les observations sont compatibles avec une étude théorique où 
le référentiel terrestre 𝑅𝑇 est considéré galiléen, cf 1e année.  
En revanche, si on regarde très finement certaines expériences réalisées sur des grandes échelles de temps 
ou d’espace, il apparaît des écarts notables et quantifiables qui démontrent que 𝑅𝑇 n’est pas galiléen. 
 
a) Expériences 
 Chute des corps – Expérience de Reich (cf TD) 

 
 
 Pendule de Foucault 
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b) Cause 
Soit 𝑅𝐺  le référentiel géocentrique, considéré galiléen (cf § C.2.b : durée d’expérience faible par rapport à 1 
an) et 𝑅𝑇 le référentiel terrestre. 
Par rapport à  𝑅𝐺 , 𝑅𝑇 est en rotation uniforme autour d’un axe fixe, l’axe des pôles, à la vitesse angulaire 

𝜽̇ = 𝟕, 𝟑. 𝟏𝟎−𝟓 𝒓𝒂𝒅. 𝒔−𝟏. 
Ainsi, en toute rigueur, le référentiel terrestre est non galiléen. 

 ODG : Justifier la valeur de 𝜃̇. 
 
c) Force d’inertie d’entraînement : Champ de pesanteur – ODG (cf CCS2 MP 2018) 

 Le poids 𝑃⃗ = 𝑚𝑔  d’un objet 𝑀 est, par définition, la force opposée à la tension 
d’un fil au bout duquel est accroché l’objet, ce dernier étant en équilibre dans le 
référentiel terrestre. 
 Exercice classique : En déduire que le poids est égal à la somme de la force de 
gravitation exercée par la Terre de centre 𝑇 et de la force d’inertie d’entrainement : 

𝑃⃗ = −𝑚𝒢𝑀𝑇
𝑇𝑀⃗⃗⃗⃗⃗⃗ 

𝑇𝑀3
−𝑚𝑎𝑒⃗⃗⃗⃗ ⟺ 𝑔 = −𝒢𝑀𝑇

𝑇𝑀⃗⃗⃗⃗⃗⃗ 

𝑇𝑀3
− 𝑎𝑒⃗⃗⃗⃗  

 
 ODG :  
L’accélération d’entraînement est radiale vis-à-vis de l’axe des pôles. Elle est maximale au niveau de 

l’équateur où elle a pour intensité : 𝑅𝑇𝜃̇² ≈ 3. 10
−2 𝑚. 𝑠−2, où 𝑅𝑇 = 6,4. 10

3 𝑘𝑚 le rayon de la Terre.  

On peut comparer cette valeur au champ gravitationnel au niveau de l’équateur : 
𝒢𝑀𝑇

𝑅𝑇
2 ≈ 10 𝑚. 𝑠

−2.  

Ainsi, la force d’inertie d’entraînement est un terme correctif de l’ordre du millième : le schéma ci-dessus 
exagère donc la composante radiale du poids. 
 Exercice classique : Justifier l’expression de l’accélération d’entraînement au niveau de l’équateur.  

 
d) Force d’inertie de Coriolis : Influence - ODG 
 La force d’inertie de Coriolis est responsable : 

- de la déviation vers l’est des objets lors d’une chute libre de grande ampleur, cf § a et TD. 
- du sens de rotation des masses d’air autour d’une dépression (cyclones). 
 Exercice classique : Une dépression se crée en un point. Les vents convergent à grande vitesse 
vers ce point. Déterminer les directions et les sens de déviation de ces vents due à la force de 
Coriolis selon que le vent vient du nord, du sud, de l’est ou de l’ouest et selon l’hémisphère où 
apparaît la dépression. 

Dans l’hémisphère nord : latitude λ > 0 
         
 

 

 

 

 

 

 
Rotation dans le sens trigonométrique autour 

d’une dépression. 

Dans l’hémisphère sud : latitude λ < 0 
   
 

 

 

 

 

 

 
Rotation dans le sens horaire autour d’une 

dépression. 
 

Animation sur :  
www.sciences.univ-nantes.fr/sites/genevieve_tulloue/Meca/RefTerre/Depressions_FJ.php 
Exemple analogue de déviation dans un référentiel non galiléen : https://cahier-de-prepa.fr/mp-

lafayette/docs?rep=115 vidéo n°3  

https://cahier-de-prepa.fr/mp-lafayette/docs?rep=115
https://cahier-de-prepa.fr/mp-lafayette/docs?rep=115
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 ODG : On considère un système à la surface de la Terre. 
- Effets verticaux de la force de Coriolis sur le mouvement décrit dans le référentiel terrestre 

On a ‖𝑓𝑖𝑐⃗⃗⃗⃗ ‖ ≈ 𝑚𝜃̇𝑣𝑟 

Les effets verticaux de la force de Coriolis sont négligeables ssi ‖𝒇𝒊𝒄⃗⃗⃗⃗  ⃗‖ ≪ ‖𝑷⃗⃗ ‖   

⟺𝑚𝜃̇𝑣𝑟 ≪ 𝑚𝑔 ⟺ 𝑣𝑟 ≪
𝑔

𝜃̇
≈ 1. 105 𝑚. 𝑠−1 

La vitesse du système doit donc être très élevée pour que les effets verticaux de la force de Coriolis ne 
soient pas négligeables sur le mouvement décrit dans le référentiel terrestre. 

- Déviation  

On note 𝐿∗ et 𝑇∗ la distance et la durée caractéristiques de l’expérience étudiée telles que 𝑣𝑟 =
𝐿∗

𝑇∗
 . 

On note 𝐿𝑐𝑜𝑟 la distance caractéristique des effets (déviation) de la force de Coriolis telle que ‖𝑎𝑐⃗⃗⃗⃗ ‖ ≈
𝐿𝑐𝑜𝑟

𝑇∗²
. 

Par ailleurs, on a ‖𝑎𝑐⃗⃗⃗⃗ ‖ ≈ 𝜃̇𝑣𝑟 donc 𝐿𝑐𝑜𝑟 ≈ 𝜃̇𝑣𝑟𝑇
∗². 

Les effets (déviation) de l’accélération de Coriolis sont négligeables sur le mouvement décrit dans le 
référentiel terrestre ssi 𝑳𝒄𝒐𝒓 ≪ 𝑳

∗ 

⟺ 𝜃̇𝑣𝑟𝑇
∗2 ≪ 𝑣𝑟𝑇

∗ 

⟺ 𝑻∗ ≪
𝟏

𝜽̇
≈ 𝟏 𝒋𝒐𝒖𝒓 

On peut interpréter ceci en disant que si 𝑇∗ ≪ 1 𝑗𝑜𝑢𝑟, alors le mouvement du lieu de l’expérience a décrit, 
par rapport au référentiel géocentrique 𝑅𝐺 , un tout petit arc de cercle (centré sur l’axe des pôles), de 
manière uniforme. Ce mouvement peut être confondu avec une TRANSLATION rectiligne uniforme par 
rapport à 𝑅𝐺  galiléen, permettant ainsi de considérer le référentiel terrestre 𝑅𝑇 comme galiléen. 
 

On peut considérer que le référentiel terrestre est galiléen à condition de se limiter à des mouvements de 
faible ampleur (à proximité de la surface terrestre) et de durée courte devant 1 jour. 

 
 

Annexe 1 – Loi de composition des accélérations dans le cas général 
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Annexe 2 – Exemple pour illustrer la notion de point coïncident 

Cas où ℛ′ est en translation par rapport à ℛ : 

 

 

 

 
 
Cas où ℛ′ est en rotation autour d’un axe fixe ∆ par rapport à ℛ : 
Trajectoires dans ℛ des points 𝑀1, 𝑀2 et 𝑀3 points fixes dans ℛ′ : 


