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OPTIQUE 

Chapitre O1. Optique ondulatoire – Superposition d’ondes lumineuses  

 

Augustin Jean Fresnel (1788 - 1827) est un ingénieur et physicien français.  
En 1815, il s’oppose à la théorie corpusculaire de la lumière de Newton en vigueur 
jusque-là, et par des expériences sur la diffraction de la lumière, pose les bases de 
sa théorie « vibratoire » de la lumière.  
Fondateur de l’optique moderne, il proposa une explication de tous les 
phénomènes optiques, connus à son époque (*), en particulier le phénomène 
d’interférences, dans le cadre du modèle de l’optique ondulatoire.  
Ses travaux portent également sur la polarisation de la lumière : il montre ainsi 
que la lumière est une onde transversale et non longitudinale (comme le son), 
ainsi qu'on le croyait avant lui. 

(*) Au début du XXe, le rayonnement du corps noir et l’effet photoélectrique 
remettront en cause la nature purement ondulatoire de la lumière. 

 
INTRO : 
La lumière est décrite de manière complète par deux modèles : le modèle corpusculaire (photon) et le modèle 
ondulatoire (onde électromagnétique, cf ChEM). On parle de dualité onde – corpuscule. Ces deux modèles 
permettent d’expliquer l’ensemble des expériences réalisées jusqu’à maintenant avec la lumière (cf ChMQ et annexe 1). 
Pour l’étude des phénomènes d’interférences lumineuses, conséquences de la nature ondulatoire de la lumière, on 

s’appuiera sur la modélisation de la lumière par une onde électromagnétique décrite par les champs (𝑬⃗⃗ , 𝑩⃗⃗ ). 
Par ailleurs, les phénomènes d’interférences et de diffraction mettent en évidence les limites de l’approximation de 
l’optique géométrique (cf 1e année) : on développera donc le formalisme plus général de l’optique physique ou 
optique ondulatoire. 
Par ailleurs, on reviendra sur le caractère idéal d’une OPP parfaitement monochromatique et on introduira le modèle 
des trains d’ondes pour décrire l’onde émise par une source lumineuse et ses conséquences sur l’observation 
d’interférences lumineuses.   
 
Buts de ce chapitre : introduire les outils de l’optique ondulatoire (modèle scalaire, chemin optique, théorème de 
Malus) ; introduire le modèle d’émission des trains d’ondes lumineuses et les grandeurs d’intérêt d’un photorécepteur ; 
étudier la superposition de deux ondes et en déduire les conditions d’interférences lumineuses. 
 
Prérequis : 
1e année : Optique géométrique ; Propagation d’un signal - Interférences. 
2e année : Electromagnétisme  
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A) Modèle scalaire des ondes lumineuses 
C’est en décrivant la lumière par une onde électromagnétique que l’on interprète les interférences 
lumineuses. 
L’œil humain est sensible à un certain domaine de longueur d’onde 𝜆 du spectre électromagnétique que 
l’on appelle « lumière visible » compris approximativement entre 400 nm (violet) et 800 nm (rouge) qui 
correspondent à des fréquences 𝜈 comprises entre 1014 et 1015 Hz. 
 

1) De l’optique géométrique à l’optique ondulatoire 

 L’optique géométrique, introduite dès l’Antiquité, simplifie l’étude de la propagation de l’onde 
lumineuse en la remplaçant par des constructions géométriques. La nature vectorielle de la lumière n’est 
donc pas prise en compte. 
Selon cette approche, on admet que l’on peut attribuer aux ondes lumineuses en tout point de l’espace : 

- Une direction de propagation décrite par un vecteur unitaire 𝑢⃗ (𝑀) ; 
- Une vitesse de propagation v(𝑀). 

Un rayon lumineux correspond à une ligne de champ du champ 𝒖⃗⃗ (𝑴), il indique la direction et le sens de 

propagation de l’énergie lumineuse : c’est donc une ligne de champ du vecteur de Poynting moyen 〈𝚷⃗⃗ 〉. 
L’indice optique d’un milieu (= indice de réfraction) vérifie : 

𝑛 =
𝑐

v
> 1 

Avec 𝑐 la célérité de la lumière dans le vide (𝑐 ≈ 3,00. 108𝑚. 𝑠−1). 
 
Les constructions d’optique géométrique (image conjuguée à un objet) s’appuient sur les principes 
suivants : 

(i) Dans un Milieu Transparent, Linéaire, Homogène et Isotrope (MTLHI), la lumière se propage 
rectilignement i.e. que les rayons lumineux sont des droites orientées. 
(ii) Indépendance des rayons lumineux : Les rayons se propagent de façon indépendante i.e. que les 
rayons lumineux qui se croisent n’interagissent pas entre eux. 
(iii) Principe de retour inverse de la lumière : le trajet suivi par la lumière entre deux points situés sur le 
même rayon lumineux est indépendant du sens de propagation de la lumière. 

Rq : (i) et (iii) sont des conséquences du principe de Fermat établi en 1657 : la lumière se propage d’un point 
à un autre sur des trajectoires telles que la durée de parcours soit localement minimale. 
 

Cette description n’est valable que si la distance (*) 𝑑 caractéristique de la variation spatiale de l’indice 
optique 𝑛  est grande devant la longueur d’onde λ :  

𝒅 ≫ 𝝀 
C’est cette inégalité qui constitue le cadre de l’approximation de l’optique géométrique. 
(*) 𝑑 peut correspondre à la taille des obstacles limitant les faisceaux (diamètre d’une lentille, d’un 
diaphragme, largeur d’une fente)… 

Cette condition est donc satisfaite pour 𝑑 ≫ 1 µ𝑚 i.e. pour tout système de dimension macroscopique.  
Cette approche suffit pour expliquer le principe de propagation de la lumière dans une fibre optique ou 
pour construire l’image d’un objet par un système optique usuel (cf 1e année). 
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 Cependant, l’optique géométrique ne permet pas d’expliquer certains phénomènes tels que la  
diffraction ou les interférences car la condition 𝑑 ≫ 𝜆 n’est pas vérifiée en tout point. 
 
Figure 1 : Expérience des trous d’Young (cf détails ChO2 et TP) : 
Un écran opaque percé de deux petits trous est éclairé par une source S quasi-ponctuelle et 
monochromatique. On considère la lumière atteignant un écran placé un peu plus loin. 
 
 
 
 
 
 
 
 
 
 
 
Observation (cf a) : alternance de bandes claires et sombres sur l’écran : figure d’interférences. 
Dans le cadre de l’optique géométrique, on ne devrait voir sur l’écran que deux points lumineux (cf b). 
Cependant, la condition 𝑑 ≫ 𝜆 n’est pas vérifiée au niveau des trous 
et il y a diffraction : « étalement » de la lumière autour de la direction 
prévue par l’optique géométrique (cf c). 
Il existe donc une zone où il y a superposition des faisceaux lumineux 
issus de chaque trou. C’est cette superposition qui donne lieu à la 
figure d’interférences (interférences constructives / destructives : 
bandes claires / sombres).  
 
 
Ce sont ces expériences (travaux de Huygens, Young et Fresnel) qui ont mis en défaut la théorie purement 
corpusculaire au XIXe siècle car ils sont observés avec tous les types d’ondes, cf figure 2 et 1e année. 
 
Figure 2 : Interférences d’ondes à la surface de l’eau : 

 

On perturbe la surface de l’eau d’une cuve à ondes avec deux 
pointes ou deux jets d’air pulsé, placés en deux points assez 
proches : E1 et E2.  

On obtient une figure d’interférences constituées :  
 de « lignes » où l’amplitude de l’onde résultante est quasi-nulle 
→ interférences destructives  
 de « lignes » où l’amplitude de l’onde résultante est élévée → 
interférences constructives. 

Cf détails dans l’annexe 2. 

 
NB : Les interférences lumineuses sont plus délicates à observer expérimentalement que les interférences 
des ondes à la surface de l’eau, cf § B.2 notion de « cohérence ».  
 
Pour interpréter les interférences lumineuses, on s’appuie sur le modèle de l’optique ondulatoire, 
« intermédiaire » entre l’optique géométrique et les ondes électromagnétiques. 
 

trous d'Young 
a b 

c 
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2) Modèle scalaire – Intensité lumineuse 

a) Vibration scalaire 
Pour décrire la superposition de deux ondes, il faut introduire le signal qui leur correspond. 
Ex : La propagation d’une onde à la surface de l’eau est décrite par le signal est 𝑧(𝑀, 𝑡) i.e. le déplacement 
vertical en M à t. 
 
 Rappels partie « Electromagnétisme » :  
Le signal complet associé à une onde lumineuse est le champ électromagnétique i.e. l’ensemble des 

champs vectoriels 𝐸⃗ (𝑀, 𝑡) et 𝐵⃗ (𝑀, 𝑡).  

Dans le vide (ou l’air), l’onde est transversale : les champs 𝐸⃗ (𝑀, 𝑡) et 𝐵⃗ (𝑀, 𝑡) 
sont constamment perpendiculaires à la direction 𝑢⃗  de propagation de 
l'onde, ici 𝑢𝑧⃗⃗⃗⃗ .  
La lumière émise par les sources rencontrées usuellement n’est pas polarisée 

(la direction de 𝐸⃗  change aléatoirement au cours du temps).  
Pour une lumière non polarisée, les deux composantes 𝐸𝑥 et 𝐸𝑦 du champ 

électrique dans le plan perpendiculaire à la direction de propagation sont 
parfaitement équivalentes.  
 

Le modèle scalaire consiste à décrire l’onde lumineuse par un champ scalaire 𝒔(𝑴, 𝒕) appelé vibration 
lumineuse scalaire qui correspond à une composante quelconque du champ électrique selon un axe 

perpendiculaire à la direction de propagation 𝑢⃗  : 𝑠(𝑀, 𝑡) = 𝐸⃗ (𝑀, 𝑡). 𝑖         avec 𝑖 ⊥ 𝑢⃗ .  

 
Rq : Lorsque Huygens, puis Fresnel, ont élaboré le modèle scalaire de la lumière, ils ignoraient la nature 
vectorielle du champ électromagnétique associé à la lumière. Ce modèle scalaire était donc pour eux un 
postulat à la base de l’optique. 
 
 
 

 

b) Photorécepteurs – Intensité de la lumière 
Expérimentalement, on ne peut pas mesurer directement la vibration scalaire mais ses effets sur l'œil ou 
d'autres récepteurs. 
 
 Temps de réponse 
Le temps de réponse τr d’un capteur est la durée caractéristique des variations les plus rapides qu’il puisse 
transcrire. Par exemple, si un capteur est tel que τr = 1 ms, il ne peut pas percevoir des variations 
d’intensité sur des durées ≈ 1 µs. Cet aspect est déterminant en optique. 
 

A connaître : ODG des temps de réponse 𝜏𝑟  
 - Œil : 𝝉𝒓 ≈ 𝟎, 𝟏 𝒔 
 - Photodiode : 𝝉𝒓 ≈ 𝟏 µ𝒔 ; Capteur CCD (Charge Coupled Device) : 𝝉𝒓 ≈ 𝟏 𝒎𝒔 

On note 𝑇 la période de la vibration lumineuse, on a 𝑻 =
𝟏

𝝂
≈ 𝟏𝟎−𝟏𝟒 à 𝟏𝟎−𝟏𝟓 𝒔 ≪ 𝝉𝒓. 

Ainsi, aucun capteur n’est capable de suivre les variations instantanées du signal lumineux. 
Le signal délivré par tout capteur optique est proportionnel à l’énergie accumulée sur la surface du capteur 
pendant une durée de l’ordre de 𝜏𝑟, autrement dit à la puissance moyenne reçue pendant 𝜏𝑟. 
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 Grandeur mesurée : intensité lumineuse / éclairement 

L’INTENSITE LUMINEUSE 𝑰(𝑴) ou ECLAIREMENT 𝓔(𝑴) est la puissance surfacique moyenne reçue en un 
point 𝑴.  
Le signal délivré par un photorécepteur placé en M est proportionnel à l’intensité lumineuse en ce point. 
On a : 

𝑰(𝑴) = 𝓔(𝑴) =  𝑲. 〈𝒔𝟐(𝑴, 𝒕)〉    avec 𝐾 une constante positive 
USI de 𝑰(𝑴) : W.m-2 
Les photorécepteurs sont dits quadratiques. 

Démonstration : L’expression ci-dessus s’obtient pour une OPP par le raisonnement suivant : 

On considère une OPP se propageant dans le vide selon le vecteur 𝑢⃗  . On a : 

𝐵⃗ =  
𝑢⃗ ∧ 𝐸⃗ 

𝑐
   et donc  𝛱⃗⃗ =

𝐸⃗ ∧ 𝐵⃗ 

𝜇0
=
𝐸2

𝜇0𝑐
𝑢⃗  

Pour un élément de surface 𝑑𝑆 centré sur M recevant la puissance moyenne 〈𝑑𝑃〉 : 

𝐼(𝑀) =
〈𝑑𝑃〉

𝑑𝑆
=
〈𝛱⃗⃗ (𝑃, 𝑡) 〉. 𝑑𝑆 ∙ 𝑢⃗ 

𝑑𝑆
=  ‖〈𝛱⃗⃗  〉‖ =

1

𝜇0𝑐
〈𝐸2〉 

Or par définition, la vibration scalaire 𝑠 et le champ électrique 𝐸 sont proportionnels ainsi : 
𝐼 = 𝐾. 〈𝑠2(𝑀, 𝑡)〉 

En pratique, il n’est pas nécessaire de connaître la valeur de la constante 𝐾.  

Pour une OPPM, on peut aussi utiliser la représentation complexe 𝑠 de la vibration scalaire et on obtient : 

𝐼 = 𝐾′. |𝑠(𝑀)|
2
 

En effet, on rappelle que 〈𝒂. 𝒃〉 =
𝟏

𝟐
𝑹𝒆(𝒂. 𝒃∗). 

⟹ 𝐼 = 𝐾. 〈𝑠2(𝑀, 𝑡)〉 = 𝐾.
1

2
𝑅𝑒(𝑠. 𝑠∗) =

𝐾

2
𝑅𝑒 (|𝑠(𝑀)|

2
) =

𝐾

2
|𝑠(𝑀)|

2
 

 
 
 

3) Outils de l’optique ondulatoire 

a) Onde monochromatique – Vibration sinusoïdale 

Une onde lumineuse monochromatique est une vibration idéale purement sinusoïdale qui s’écrit donc en 
M sous la forme : 

𝒔(𝑴, 𝒕) = 𝒔𝟎(𝑴) ∙ 𝒄𝒐𝒔(𝝎𝒕 − 𝝋𝑴) 

 𝜔 = 2𝜋𝜈 =
2𝜋

𝑇
 la pulsation, USI : rad.s-1 ; 

 |𝑠0(𝑀)| l’amplitude de l’onde en M (l’onde n’est pas nécessairement une OPP) ; 
 −𝜑𝑀 la phase initiale de l’onde en M (ou retard de phase en M) 
L’argument de la fonction sinusoïdale est appelé phase instantanée en 𝑀 à 𝑡 : Φ(𝑀, 𝑡) = 𝜔𝑡 − 𝜑𝑀.  
On peut caractériser cette onde par λ0 sa longueur d’onde dans le vide* : 

𝝀𝟎 =
𝟐𝝅𝒄

𝝎
 

La représentation complexe associée à cette vibration est : 

𝒔(𝑴, 𝒕) = 𝒔𝟎(𝑴) ∙ 𝒆
𝒊(𝝎𝒕−𝝋𝑴) 

* La longueur d’onde dépend du milieu de propagation. On a la relation 𝝀 =
𝝀𝟎

𝒏
 

avec 𝜆0 la longueur d’onde dans le vide et 𝜆 la longueur d’onde dans un milieu d’indice 𝑛. 
En revanche, la pulsation (la fréquence et la période) sont invariantes par changement de milieu. 
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b) Chemin optique - Déphasage associé à la propagation 
Dans un milieu d’indice 𝒏, la vibration lumineuse se propage le long des rayons lumineux à la vitesse 

𝐯 =
𝒄

𝒏
 avec 𝑐 la célérité de la lumière dans le vide. 

Soit un rayon lumineux allant de A à B. On note 𝒕𝑨𝑩 le temps mis par la lumière pour aller de A à B : 

𝑡𝐴𝐵 = ∫
𝑑ℓ

v

𝐵

𝐴

=
1

𝑐
∫ 𝑛 ∙ 𝑑ℓ
𝐵

𝐴

 

 

On définit le CHEMIN OPTIQUE entre A et B, noté (𝐴𝐵) : 

(𝑨𝑩) = ∫ 𝒏 ∙ 𝒅𝓵
𝑩

𝑨

 

Ainsi,            𝒕𝑨𝑩 =
𝟏

𝒄
∙ (𝑨𝑩) 

Cas particulier fréquent : Si on considère un rayon lumineux allant de A à B au sein d’un milieu homogène : 
alors on a 𝑛 = 𝑐𝑡𝑒  et ce rayon est une droite. D’où : 

(𝑨𝑩) = 𝒏 ∙ 𝑨𝑩 
Le produit 𝑛 ∙ 𝐴𝐵 est appelée « épaisseur optique ». 

NB : Si plusieurs rayons lumineux permettent d’aller du point A au point B, alors le chemin optique (𝐴𝐵) 
peut dépendre du rayon suivi : c’est à la base des phénomènes d’interférences, cf § B.3 « différence de 
marche ». 

Pour une onde monochromatique, on a : 𝑠(𝑂, 𝑡) = 𝑠0(𝑂) ∙ 𝑐𝑜𝑠(𝜔𝑡 − 𝜑𝑂) et  
𝑠(𝑀, 𝑡) = 𝑠0(𝑀) ∙ 𝑐𝑜𝑠(𝜔(𝑡 − 𝑡𝑂𝑀) − 𝜑𝑂) 

⟺ 𝑠(𝑀, 𝑡) = 𝑆0(𝑀) ∙ 𝑐𝑜𝑠 (𝜔𝑡 −
𝜔

𝑐
∙ (𝑂𝑀) − 𝜑𝑂) 

⟺ 𝑠(𝑀, 𝑡) = 𝑆0(𝑀) ∙ 𝑐𝑜𝑠 (𝜔𝑡 −
2𝜋

𝜆0
∙ (𝑂𝑀) − 𝜑𝑂) 

Or 𝑠(𝑀, 𝑡) = 𝑠0(𝑀) ∙ 𝑐𝑜𝑠(𝜔𝑡 − 𝜑𝑀) 
 

BILAN : 
Entre O et M, l’onde subit donc un déphasage dû à la propagation : 

𝝋𝑴 −𝝋𝑶 = 𝝎 ∙ 𝒕𝑶𝑴 =
𝟐𝝅

𝝀𝟎
∙ (𝑶𝑴) 

avec λ0 la longueur d’onde dans le vide 

 
Rq : En plus du déphasage lié à la propagation, la lumière subit un déphasage supplémentaire de 𝜋 𝑟𝑎𝑑 
dans certaines situations qui sera donné par l’énoncé. Par exemple, lorsque le rayon lumineux subit une 
réflexion sur un milieu plus réfringent, i.e. sur un dioptre séparant le milieu de propagation d’indice 𝑛 d’un 
milieu d’indice 𝑛′ > 𝑛 (on parle de réflexion « vitreuse »).  
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c) Surfaces d’onde – Onde sphérique et onde plane 

DEFINITIONS : 
 On appelle SURFACE D’ONDE une surface sur laquelle le signal est uniforme à tout instant i.e. que les 
points M formant la surface d’onde sont, à un instant t fixé, dans un même état de vibration. 
 Si les surfaces d’onde sont des sphères concentriques, l’onde est dite sphérique. 
 Si les surfaces d’onde sont des plans parallèles, l’onde est dite plane. 

         

 

Dans un milieu homogène, une source O ponctuelle émet une onde sphérique (cf figure de gauche), qui 
peut s’approximer par une onde plane (cf figure centrale) à grande distance de la source (cf figure de 
droite). 

NB : Les rayons lumineux associés à une onde sphérique sont des droites concourantes en un point O. Les 
rayons lumineux associés à une onde plane sont des droites parallèles entre elles. 
On utilise le modèle de l’onde plane pour décrire la lumière émise par une source lumineuse très éloignée, 
ou par un collimateur (source éclairant un petit trou dans le PFO d’une lentille convergente) ou par un 
laser. 
 
 La vibration scalaire associée à une onde monochromatique sphérique émise par la source O dans un 
milieu homogène d’indice 𝑛 s’écrit : 

𝑠(𝑀, 𝑡) = 𝑠(𝑟, 𝑡) =
𝐴

𝑟
∙ 𝑐𝑜𝑠 (𝜔𝑡 −

𝜔

𝑐
𝑛𝑟 − 𝜑𝑂) 

Avec 𝑟 = 𝑂𝑀 

 Exercice classique : Justifier l’expression de la phase instantanée Φ(𝑀, 𝑡) = 𝜔𝑡 −
𝜔

𝑐
𝑛𝑟 − 𝜑𝑂. 

La décroissance de l’amplitude en 
1

𝑟
 traduit la conservation de l’énergie, cf ex 3 TDEM5. Souvent la 

dimension 𝑑 de la zone d’observation est faible devant la distance moyenne 𝐷 à la source O et on néglige 
les variations de l’amplitude avec 𝑟.  
La vibration scalaire associée à une onde monochromatique sphérique, émise par la source O dans un 
milieu homogène d’indice 𝒏, pourra donc s’écrire : 

𝒔(𝑴, 𝒕) ≈ 𝑺𝟎 ∙ 𝒄𝒐𝒔 (𝝎𝒕 −
𝝎

𝒄
∙ (𝑶𝑴) − 𝝋𝑶) = 𝑆0 ∙ 𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑟 − 𝜑𝑂)     (1) 

Avec 𝑘 = 𝑛
𝜔

𝑐
= 𝑛

2𝜋

𝜆0
=
2𝜋

𝜆
 la norme du vecteur d’onde dans le milieu d’indice 𝑛. 

 
 La vibration scalaire associée à une onde monochromatique plane se propageant dans un milieu 
homogène d’indice 𝒏 s’écrit : 

𝑠(𝑀, 𝑡) = 𝑺𝟎 ∙ 𝒄𝒐𝒔 (𝝎𝒕 −
𝝎

𝒄
∙ (𝑶𝑴) − 𝝋𝑶) = 𝑆0 ∙ 𝑐𝑜𝑠(𝜔𝑡 − 𝑘⃗ . 𝑟 − 𝜑𝑂)     (2) 

Avec O un point origine quelconque, 𝑟 = 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  , 𝑘⃗ = 𝑘𝑢⃗ = 𝑛
𝜔

𝑐
𝑢⃗ = 𝑛

2𝜋

𝜆0
𝑢⃗  le vecteur d’onde avec 𝑢⃗  la 

direction de propagation de l’onde. 
 
 
  

O 
O 
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Rappel : L’argument de la fonction sinusoïdale est appelé phase instantanée en 𝑀 à 𝑡 : Φ(𝑀, 𝑡).  
D’après les expressions (1) et (2), une surface d’onde est donc une surface équiphase. 
Or Φ(𝑀, 𝑡) = 𝜔𝑡 − 𝜑𝑀, ainsi, une surface d’onde correspond à l’ensemble des points M tels que 
𝜑𝑀 = 𝑐𝑠𝑡𝑒. 
Or au § A.3.b, on a obtenu : 

𝜑𝑀 = 𝜔 ∙ 𝑡𝑂𝑀 + 𝜑𝑂 =
2𝜋

𝜆0
∙ (𝑂𝑀) + 𝜑𝑂 

Avec 𝑡𝑂𝑀  le temps mis par la lumière pour aller de 𝑂 à 𝑀 

Conclusions : Soit 𝑂 un point source, une surface d’onde correspond à un ensemble de points 𝑴  
- atteints en même temps par la lumière issue de 𝑂 
- ⟺ tels que le chemin optique (𝑶𝑴) est le même : (𝑂𝑀) = 𝑐𝑠𝑡𝑒   
Conséquence : Entre deux surfaces d'onde, le chemin optique est le même quel que soit le rayon 
lumineux suivi. 

 
 
d) Théorème de Malus (admis) 

Quelque soit le nombre de réflexions ou réfractions subies, les rayons lumineux sont perpendiculaires aux 
surfaces d’ondes.  

Ex : cf figures p.9. 
 
Ce théorème fait le lien entre les modèles géométrique et ondulatoire de la lumière, il est donc important 
sur le plan conceptuel mais aussi dans la pratique des calculs. 
 
 Ne pas confondre le théorème de Malus avec la loi de Malus (relative à la polarisation, cf ChEM5) ! 
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4) Effet d’une lentille dans l’approximation de Gauss – Stigmatisme  

 Exercice classique : On considère une lentille mince (L) éclairée dans les conditions de Gauss, elle est 
donc approximativement stigmatique. On considère un couple de points conjugués (A, A’) par la lentille 
(L) : A’ est l’image de A par (L). 
Montrer le théorème de Malus implique que le chemin optique séparant A et A’ est indépendant du 
rayon lumineux considéré. 

 
 

Généralisation : Le chemin optique entre deux points conjugués par un système optique stigmatique est 
indépendant du rayon lumineux considéré.  

 
NB : Transformations onde sphérique ↔ plane par une lentille convergente associées aux notions de foyers 
objet (ou image) principal (ou secondaire). 
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5) Modèle d’émission de la lumière 

a) Sources de lumière réelles – Composition spectrale 
Il n’existe pas dans la réalité de lumière parfaitement monochromatique.  
Cependant, toute vibration lumineuse « réelle » 𝑠(𝑀, 𝑡) peut se décomposer en somme de vibrations 
monochromatiques. C’est ce que l’on observe expérimentalement en faisant passer un pinceau de lumière 
dans un prisme de verre : les différentes composantes monochromatiques sont dispersées et on observe le 
spectre de la lumière. Pour le décrire, on introduit la densité spectrale d’éclairement E 𝜆(𝜆).  

Soit 𝑑ℰ l’éclairement élémentaire dans l’intervalle de longueurs d’onde [𝜆, 𝜆 + 𝑑𝜆], la densité spectrale 
d’éclairement E 𝜆(𝜆) est donnée par : 

𝑑ℰ =E 𝜆(𝜆). 𝑑𝜆 
L’USI de E 𝜆(𝜆) est 𝑊.𝑚−3. 

L’éclairement total est donc ℰ = ∫  
∞

0
E 𝜆(𝜆). 𝑑𝜆. 

 
Le spectre de la lumière est la courbe représentative de la fonction E 𝜆(𝜆).  
 
Exemples de spectres (rappels 1e année) : 

 Une source de lumière blanche possède un spectre 
continu contenant toutes les longueurs d’ondes visibles : 
   
 
 
 
 

Spectres de la lumière solaire (trait plein)  
et de la lumière d’une lampe à filament (pointillés) 

 

 Une lampe spectrale possède un spectre composé de pics fins appelés raies spectrales, caractéristiques 
de l’espèce chimique qu’elle contient. Une raie est caractérisée par sa longueur d’onde moyenne λ0m et sa 
largeur à mi-hauteur ∆λ telle que ∆λ ≪ λ0m. 

← Zoom sur une raie de la figure 6.12 
 

 Un LASER émet un spectre composé d’une unique raie, beaucoup plus fine que celle émise par une 
lampe spectrale mais ayant toutefois une largeur spectrale non nulle. 
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b) Modèle des trains d’ondes 
 Description  
D’un point de vue microscopique, l’émission de lumière est due à l’émission de photons par les entités de 
la source (lampe à filament, lampe spectrale, laser).  
Aucune source lumineuse réelle ne peut émettre une onde pendant un temps infini. Une vibration 
sinusoïdale n’a donc aucune existence réelle, du fait de son extension temporelle infinie : 

∀ 𝒕,     𝒔(𝑴, 𝒕) = 𝒔𝟎(𝑴) ∙ 𝒄𝒐𝒔(𝝎𝒕 − 𝝎𝒕𝑶𝑴 −𝝋𝑶) 
 

Les sources apparemment monochromatiques n’émettent pas en continu mais par TRAINS D’ONDES. 
A l’intérieur de chaque train d’onde, l’onde émise par O est représentée par une sinusoïde de durée finie, 
∆𝑡 en moyenne, mais la phase initiale en O varie aléatoirement d’un train d’onde au suivant. 

 

DEFINITIONS : 
La durée moyenne d’un train d’onde, notée ∆𝑡 ou 𝜏𝑐, est appelée TEMPS DE COHERENCE de la source. 
La LONGUEUR DE COHERENCE TEMPORELLE est la longueur moyenne des trains d’ondes dans le vide 
notée 𝐿𝑐 = 𝑐 ∙ ∆𝑡. 

 

 
(a) Extension temporelle d’un train d’ondes ; (b) Extension spatiale d’un train d’ondes 

 
 Temps de cohérence et largeur spectrale – ODG 

Le temps de cohérence d’une source lumineuse est relié à son spectre. 
On note ∆𝒇 ou ∆ν la largeur spectrale de la source : ∆ν = ν𝒎𝒂𝒙 − ν𝒎𝒊𝒏. 
D’après la théorie mathématique de la transformée de Fourier, on a : 

∆𝒕. ∆𝛎 ≈ 𝟏      (𝑹𝟏) 
En optique, on travaille plus souvent avec le spectre en longueur d’onde. On note 𝜆0m la longueur d’onde 
moyenne du spectre et ∆𝜆 la largeur spectrale en longueur d'onde : ∆𝜆 = 𝜆𝑚𝑎𝑥 − 𝜆𝑚𝑖𝑛.  
Pour ∆𝜆 ≪ 𝜆0m, on a : 

∆𝑡 ≈
1

∆ν
=
1

𝑐
∙
𝜆0m

2

∆𝜆
            (𝑅2) 

 Exercice classique : Démontrer la relation (𝑅2). 
NB : (𝑅1) est à connaître (cf paquets d’onde au ChEM6 sous la forme  
∆𝜔 ∙ ∆𝑡 ≈ 2𝜋) ; en revanche, il faut savoir retrouver (𝑅2). 
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On retrouve donc le cas idéal :  
Une vibration purement sinusoïdale, i.e. émission sans interruption soit ∆𝒕 infini, correspond à une onde 
purement monochromatique : ∆𝛎 = 𝟎. 
Pour une source réelle :  
Plus son spectre est étendu, plus les trains d’ondes qu’elle émet sont courts : on dit que la source possède 
une faible cohérence temporelle. 
 
 

A connaître : ODG des temps de cohérence ∆𝑡 ou 𝜏𝑐  de sources usuelles : 

- LASER : 𝟏𝟎−𝟖 𝒔 

- lampe spectrale : 𝟏𝟎−𝟏𝟏 𝒔 

- lampe à filament (source de lumière blanche) : 𝟏𝟎−𝟏𝟓 𝒔 

On note 𝑇 la période de l’onde lumineuse (𝑇 ≈ 10−14 à 10−15 𝑠) et 𝜏𝑟 le temps de réponse d’un 
photorécepteur. 

LASER et lampe spectrale Lampe à filament 
𝑇 ≪ ∆𝑡 ≪ 𝜏𝑟 𝑇 ≈ ∆𝑡 ≪ 𝜏𝑟 

 
 ODG : 
i) Déterminer l’ODG de la largeur spectrale d’une raie de lampe spectrale. 
ii) Retrouver l’ODG de ∆𝑡 pour la lampe à filament. 
iii) Déterminer les ODG de longueur de cohérence 𝐿𝑐  des 3 types de source (on reviendra sur ces ODG au 
ChO2 : « cohérence temporelle »). 
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B) Superposition d’ondes lumineuses – Interférences 

1) Superposition de deux ondes quasi-monochromatiques – Intensité résultante 

 Position du problème 
On considère la superposition en un point 𝑀 de deux ondes lumineuses 
provenant de deux sources primaires 𝑆1 et 𝑆2. 
 
D’après le § A.3, les vibrations scalaires en 𝑀 associées aux ondes quasi-
monochromatiques émises par les sources 𝑆1 et 𝑆2 s’écrivent : 
 

𝒔𝟏(𝑴, 𝒕) = 𝒔𝟏𝟎cos (𝝎𝟏𝑡 − 𝝋𝟏,𝒕(𝑀)) 
𝒔𝟐(𝑴, 𝒕) = 𝒔𝟐𝟎cos (𝝎𝟐𝑡 − 𝝋𝟐,𝒕(𝑀)) 

Pour 𝑖 = 1, 2 : 
Pulsation de chaque onde : 𝜔𝑖   

Phase initiale en M : 𝜑𝑖,𝑡(𝑀) =
𝜔𝑖

𝑐
∙ (𝑆𝑖𝑀) + 𝜑𝑆𝑖,𝑡  

 

1

𝑐
∙ (𝑆𝑖𝑀) = 𝑡𝑆𝑖𝑀 

Durée de propagation de la 
lumière de 𝑆𝑖 à 𝑀. 

→ associée à la propagation 

𝜑𝑆𝑖,𝑡 

Phase initiale de l’onde en 𝑆𝑖 
pour le train d’onde qui 

atteint 𝑴 à 𝒕. 
→ associée à l’émission 

 
 D’après le principe de superposition, 𝑠(𝑀, 𝑡) = 𝑠1(𝑀, 𝑡) + 𝑠2(𝑀, 𝑡) mais ce n’est pas forcément le cas 
pour l’intensité lumineuse, car elle est non linéaire : il y a des situations pour lesquelles 𝐼(𝑀) ≠ 𝐼1(𝑀) +
𝐼2(𝑀).  
 

On dit qu’il y a INTERFERENCES entre deux ondes lorsque l’intensité lumineuse issue de la superposition 
de ces deux ondes n’est pas égale à la somme des intensités de chaque onde individuelle.  

 

Sachant que 𝑰(𝑴) =  𝑲. 〈𝒔𝟐(𝑴, 𝒕)〉, on peut montrer (cf TD) que : 
 

𝑰(𝑴) = 𝑰𝟏(𝑴) + 𝑰𝟐(𝑴) + 𝟐√𝑰𝟏(𝑴)𝑰𝟐(𝑴)〈𝒄𝒐𝒔(∆𝚽(𝑴, 𝒕))〉⏟                    
terme d'interférences

 

Avec 

∆𝚽(𝑴, 𝒕) = (𝝎𝟏 −𝝎𝟐)𝒕 + (𝝋𝟐,𝒕(𝑴) − 𝝋𝟏,𝒕(𝑴)) le déphasage entre les deux ondes à 𝑡 en 𝑀. 

 
 
On observe des interférences si et seulement si le terme d’interférences est non nul 

⟺ 〈𝒄𝒐𝒔(∆𝚽(𝑴, 𝒕))〉 ≠ 𝟎 
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2) Terme d’interférences – Conditions d’interférences / de cohérence 

a) Absence d’interférences  

 Cas de deux ondes non synchrones i.e. de pulsations différentes : 𝝎𝟐 ≠ 𝝎𝟏 
Etant donné l’ODG du temps de réponse 𝜏𝑟  du photorécepteur, si 𝝎𝟐 ≠ 𝝎𝟏 alors : 

〈𝒄𝒐𝒔(∆𝚽(𝑴, 𝒕))〉 = 𝟎 ⟹ pas d'interférences 

 

 Cas de deux ondes synchrones 𝝎𝟐 = 𝝎𝟏 = 𝝎 

∆Φ(𝑀, 𝑡) = 𝜑2,𝑡(𝑀) − 𝜑1,𝑡(𝑀)    avec    𝜑𝑖,𝑡(𝑀) =
𝜔

𝑐
∙ (𝑆𝑖𝑀) + 𝜑𝑆𝑖,𝑡 

Si les sources primaires 𝑺𝟏 et 𝑺𝟐 sont physiquement différentes : chacune émet ses propres trains d’ondes 
aléatoirement. Les phases initiales 𝝋𝑺𝒊,𝒕 associées aux trains d’ondes qui atteignent 𝑀 à 𝑡 varient alors 

indépendamment l’une de l’autre sur le temps de réponse 𝜏𝑟 du photorécepteur. On a donc : 

〈𝒄𝒐𝒔(∆𝚽(𝑴, 𝒕))〉 = 𝟎 ⟹ pas d'interférences 

 
b) Cohérence – Dispositifs interférentiels 

Pour deux ondes quasi-monochromatiques1 qui se superposent en M : 

Si les ondes sont incohérentes entre elles (non synchrones 𝜔2 ≠ 𝜔1 et / ou sources distinctes et / ou trains 
d’ondes différents) i.e. ∆𝚽(𝑴, 𝒕) varie temporellement, on a : 

Absence d’interférences i.e. additivité des intensités lumineuses : 𝑰(𝑴) = 𝑰𝟏(𝑴) + 𝑰𝟐(𝑴) 

Les ondes sont COHERENTES entre elles si ∆𝚽(𝑴, 𝒕) indépendant du temps (ou très lentement variable 
vis-à-vis de 𝜏𝑟). On obtient alors des interférences : 𝑰(𝑴) ≠ 𝑰𝟏(𝑴) + 𝑰𝟐(𝑴) 
Conditions d’interférences = Conditions de cohérence : 

(𝐶1) : Les ondes doivent être synchrones 𝝎𝟐 = 𝝎𝟏 = 𝝎 (ondes de même longueur d’onde) ; 
(𝐶2) : Les ondes doivent appartenir au même train d’onde1 ⟹ ∀𝑡,𝜑𝑆1,𝑡 = 𝜑𝑆2,𝑡 

Pour satisfaire (𝐶2), il faut que les ondes soient issues d’une même source primaire ponctuelle. On 
obtient des interférences optiques avec des diviseurs d’onde (cf ci-dessous) : les ondes sont émises par le 
même point source 𝑆 et entre 𝑺 et 𝑴, les ondes suivent deux trajets différents notés (𝟏) et (𝟐). 

(𝐶1)+(𝐶2)
⇒      ∆Φ(𝑀, 𝑡) =

𝝎

𝒄
∙ ((𝑺𝑴)𝟐 − (𝑺𝑴)𝟏) = ∆Φ(𝑀) est indépendant du temps ! 

1Cf ChO2, pour une source telle que la largeur spectrale ∆𝜈 s’écarte de 0 : « cohérence temporelle ».   
Rq : Parfois « ondes cohérentes entre elles » désignent seulement la condition (C2).  
 
 Dispositifs interférentiels / diviseurs d’onde 
Pour respecter les conditions d’interférences lumineuses, on utilise une source unique associée à un 
diviseur d’onde. La division d’onde peut-être réalisée de deux façons : 
 
 
 
 
 
 
 
 
 
  

 Par division du front d’onde : on isole spatialement 
deux parties d’une onde provenant d’une même 
source 𝑆. On fait ainsi interférer deux rayons 
différents issus d’une même source. 

Ex : Trous d’Young (cf ChO2 et TP) 
 
 

 Par division d’amplitude : un même rayon est 
séparé en deux parties, par exemple grâce à 
l’utilisation d’une lame semi-réfléchissante. On fait 
ainsi interférer chaque rayon émis par la source 
avec lui-même. 

Ex : Interféromètre de Michelson (cf ChO3 et TP) 
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3) Formule de Fresnel – Grandeurs associées au déphasage 
a) Expression de l’intensité résultante 

FORMULE DE FRESNEL : 
Lorsque des ondes quasi-monochromatiques et cohérentes entre elles provenant de 𝑆 se superposent en 
𝑀, l’intensité s’écrit : 

𝑰(𝑴) = 𝑰𝟏(𝑴) + 𝑰𝟐(𝑴) + 𝟐√𝑰𝟏(𝑴)𝑰𝟐(𝑴)𝒄𝒐𝒔(∆𝚽(𝑴)) 

avec ∆𝚽(𝑴) =
𝝎

𝒄
∙ ((𝑺𝑴)𝟐 − (𝑺𝑴)𝟏) 

 Démonstrations à connaître : Démontrer la formule de Fresnel  avec les vibrations réelles et  avec 
leurs représentations complexes. 
 

Cas particulier : 

Si 𝐼1 = 𝐼2 = 𝐼0, la formule de Fresnel s’écrit : 𝐼(𝑀) = 2𝐼0(1 + 𝑐𝑜𝑠(∆Φ(𝑀)) 

 
b) Expression du déphasage – Différence de marche – Ordre d’interférences 

 La DIFFERENCE DE MARCHE entre 𝑆 et 𝑀 est la différence de chemin optique entre deux trajets possibles 
pour la lumière entre 𝑆 et 𝑀 :  

𝜹 = (𝑺𝑴)𝟐 − (𝑺𝑴)𝟏  

 L’ORDRE D’INTERFERENCES 𝑝 est le rapport :           𝒑 =
𝜹

𝝀𝟎
 

Le déphasage en 𝑀 peut s’exprimer en fonction de la différence de marche ou de l’ordre d’interférences :  

∆𝚽(𝑴) =
𝟐𝝅

𝝀𝟎
𝜹(𝑴) = 𝟐𝝅𝒑𝑴  

 Démonstrations à connaître : Etablir les expressions de ∆Φ(𝑀). 
 
 

4) Figure d’interférences 

a) Interférences constructives / destructives – Interfrange 
 D’après la formule de Fresnel, l’intensité lumineuse dépend de la position du point 𝑀 : cette variation 
d’intensité correspond aux différentes franges de la figure d’interférences. 

Selon la position de 𝑀, on a : 

En 𝑴, frange d’interférence… 
… CONSTRUCTIVE 

i.e. zone claire 
… DESTRUCTIVE 
i.e. zone sombre 

Intensité en 𝑀 
𝑰𝒎𝒂𝒙 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2 

i.e. 𝑐𝑜𝑠(∆Φ) = 1 

𝑰𝒎𝒊𝒏 = 𝐼1 + 𝐼2 − 2√𝐼1𝐼2 

i.e. 𝑐𝑜𝑠(∆Φ) = −1 

Déphasage en 𝑀 
∆Φ = 2𝑚𝜋 

avec 𝑚 un entier 
i.e. ondes en phase en 𝑴 

∆Φ = 𝜋 + 2𝑚𝜋 
avec 𝑚 un entier 

i.e. ondes en opposition de 
phase en 𝑴 

Différence de marche en 𝑀 
𝜹 = 𝒎𝝀𝟎 

avec 𝑚 un entier 
𝜹 =

𝝀𝟎
𝟐
+𝒎𝝀𝟎 

avec 𝑚 un entier 

Ordre d’interférences 𝑝 en 𝑀 𝒑 est entier 𝒑 est demi-entier : 𝒑 = 𝒎+
𝟏

𝟐
 

Rq : L’état d’interférence est directement relié au déphasage entre les ondes.  
 

L’INTERFRANGE, noté 𝑖, correspond à la distance entre deux franges successives de même nature (claire 
ou sombre). 
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b) Facteur de contraste (= visibilité) 

Le FACTEUR DE CONTRASTE d’une figure est défini par : 

𝐶 =
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛
𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑖𝑛

 

 𝐶 est adimensionné et sans unité. 
 𝐶 varie entre 0 (si 𝐼𝑚𝑎𝑥 = 𝐼𝑚𝑖𝑛 : intensité uniforme) et 1 (si 𝑰𝒎𝒊𝒏 = 𝟎). 
Une figure est d’autant plus contrastée que 𝐶 est proche de 1. 

 

Le contraste de la figure d’interférence dépend de la valeur des intensités 𝐼1 et 𝐼2 des ondes qui interfèrent.  
 Exercice classique : Vérifier que si 𝐼1 = 𝐼2 = 𝐼0 alors le contraste est maximal. 

Rq : Dans le cas général, on a 𝐶 =
2√𝐼1𝐼2

𝐼1+𝐼2
 

 

Pour obtenir une figure d’interférences contrastée, il faut superposer deux ondes d’intensités voisines. 
Le contraste permet de quantifier la perception visuelle que l’on a du phénomène d’interférences. Une 
figure d’interférences mal contrastée est dite brouillée.  

 
Ex de figure d’interférences. 
Franges obtenues avec les 
trous d’Young, cf ChO2. 

a)  𝐼1 = 𝐼2 = 𝐼0 
 
 

b)  𝐼1 ≠ 𝐼2 
 
 

 
 
 
 
 
 
 
 
 
 
Anneaux d’égale inclinaison obtenus avec 
l’interféromètre de Michelson, cf ChO3. 
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Annexe 1 : Repères chronologiques pour l’optique 
 

Antiquité Euclide, Ptolémée Notion de rayon lumineux 
Théorie des miroirs 

XIe siècle Alhazen Origine de la lumière extérieure à l’œil 
Notions d’objet et d’image 

Expériences avec lentilles et miroirs 

XVIIe siècle Galilée (1564-1642) Lunette astronomique 

Snell (1580-1626) Lois de la réfraction 

Descartes (1596-1650) Lois de la réfraction 
Description corpusculaire de la lumière 

Fermat (1601-1665) Principe du moindre temps 

Huygens (1629-1695) Description ondulatoire de la lumière qui permet de 
retrouver les lois de Snell-Descartes 

XVIIIe siècle Newton (1642-1727)  1704 : Publication d’Opticks (réflexion, réfraction, 
diffraction et théorie des couleurs) 

XIXe siècle Young (1773 – 1829) Mise en évidence et interprétation ondulatoire des 
interférences lumineuses avec l’expérience de la 

double-fente (= fentes de Young). 

Fresnel (1788 – 1827) Etude des phénomènes de diffraction et d’interférences 

Maxwell (1831 – 1879) Unification de l’optique aux phénomènes 
électromagnétiques 

XXe siècle Planck (1858 – 1947) Rayonnement du corps noir 

Einstein (1879 – 1955) Interprétation de l’effet photoélectrique avec la notion 
de photon (corpuscule) 

→ dualité onde-corpuscule pour la lumière 

 
  

https://fr.wikipedia.org/wiki/Fentes_de_Young
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Annexe 2 – Interférences d’ondes à la surface de l’eau 
Cf 1e année 

 

Schéma du dispositif : Cuve à ondes éclairée par un stroboscope (cf fig a). L’onde est engendrée par un 
vibreur. L’image est claire là où la surface de l’eau forme une bosse ; foncée là où elle est creuse, cf fig b. 
 
 
 
 
 
 
 
 
Fig.  : On perturbe la surface de l’eau avec une « pointe » reliée à un vibreur ou avec un jet d’air pulsé. 
L’onde générée est une onde progressive sinusoïdale et circulaire (2D). 
Fig.  : On perturbe la surface de l’eau d’une cuve à ondes avec deux pointes, placées en deux points assez 
proches : E1 et E2. Ces pointes sont reliées au même vibreur.  

Les ondes générées en E1 et E2 ont à la même fréquence f : elles sont synchrones. 
De plus, les deux signaux ont la même amplitude et la même phase initiale à l’origine 𝜑01 = 𝜑02 ≡
𝜑0 indépendante du temps. 

Puisque les ondes sont synchrones et cohérentes, on observe alors une figure d’interférences. 

Photographies de l’expérience 
 1 seule « pointe »  2 « pointes » : oscillant à la même fréquence et avec la même amplitude 

   

 

  

Fig a Fig b 
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L’animation ci-après permet de visualiser les points M où les interférences sont cons-/des-tructives : 

https://phyanim.sciences.univ-nantes.fr/Ondes/cuve_ondes/interference_ondes_circulaires.php 

 Point M où les interférences sont constructives 

 

 Point M où les interférences sont destructives 

 
 

Les franges d’interférences sont des hyperboles dont les pointes sont les foyers. 
 
 
NB : Les interférences lumineuses sont plus délicates à observer expérimentalement que les interférences 
des ondes à la surface de l’eau. Ceci est lié aux différences de génération des ondes qui interfèrent. 
Contrairement à la génération des ondes de surface, la génération des ondes lumineuses n’est pas continu 
mais s’effectue par trains d’ondes, c’est ce qui rend délicat l’observation des interférences lumineuses : 
condition de cohérence exigeante. 

  

https://phyanim.sciences.univ-nantes.fr/Ondes/cuve_ondes/interference_ondes_circulaires.php


 

ChO1. Superposition ondes lumineuses 20   MP/MPI La Fayette 

Annexe 3 – Formes de franges d’interférences 
Prenons l’exemple d’une source S située sur la médiatrice des trous d’Young O1 et O2. 
Dans le cas d’un milieu homogène avant et après le plan des trous, de l’air par exemple, la différence de 
marche est liée au trajet des deux ondes :  

𝜹(𝑴) = 𝑶𝟐𝑴−𝑶𝟏𝑴 
Les franges d’interférences sont données par la relation : 𝜹(𝑴) = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕𝒆 : ce sont des hyperboloïdes 
de révolution autour de l’axe des trous 𝑂1𝑂2 de foyers 𝑂1 𝑒𝑡 𝑂2. 

 

Animation pour visualiser en 3D : 
http://culturesciencesphysique.ens-lyon.fr/ressource/DVDmichelson.xml 
 

http://culturesciencesphysique.ens-lyon.fr/ressource/DVDmichelson.xml

