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ELECTROMAGNETISME 

Chapitre EM6. Ondes électromagnétiques dans un plasma – Dispersion 

 

En 1901, l’Italien G. Marconi réalisa la 1
ère

 transmission transatlantique 
d’un message par ondes radios de fréquence f ≃ 300 kHz. Il reçut le prix 

Nobel en 1909. Cette prouesse est liée au fait que dans un milieu 
homogène, les ondes électromagnétiques se propagent en ligne droite. Or, 
sur les 6 000 km de traversée de l’océan, la courbure de la surface terrestre 
est telle que l’onde ne devrait jamais parvenir au récepteur. 

L’enregistrement du signal impose donc que l’onde se soit réfléchie. C’est 
sur la couche de l’atmosphère nommée « ionosphère » que la réflexion a 
lieu. Située entre 80 et 800 km d’altitude, l’ionosphère est constituée de gaz 
fortement ionisés à très faible pression entre 1 et 10

−6
 Pa, on parle de 

plasma dilué. 

 
INTRO : 

Dans ce chapitre, on discute la possibilité de propagation d’une onde électromagnétique dans un plasma dilué. 
Un plasma est un gaz ionisé : il est constitué de cations et d’électrons et il est globalement neutre.  
On considèrera qu’il est aussi localement neutre i.e. que 𝝆(𝑴, 𝒕) = 𝟎. 

Par une étude mécanique en RSF des particules chargées constitutives du plasma, on montrera que  : 

𝒋(𝑴,𝒕) = 𝜸 ∙ 𝑬⃗⃗⃗(𝑴,𝒕) 

avec 𝛾 la conductivité électrique complexe du plasma. 

On établira les différences avec la propagation dans le vide  : pulsation de coupure reliée aux ondes évanescentes ; 
phénomène de dispersion et les conséquences sur la propagation d’un signal réel : paquet d’ondes, en introduisant la 

vitesse de groupe. 
 
Buts de ce chapitre : Dans un plasma, établir la relation de dispersion 𝑘(𝜔), déterminer la vitesse de phase et de 

groupe d’une OPPM et définir le phénomène de dispersion, décrire la propagation d’un paquet d’onde s. 
 

Prérequis : 
1e année : Propagation de la lumière ; Régime Sinusoïdal Forcé ; Mécanique du point. 

2e année : EM4 Electromagnétisme en régime variable ; EM5 Ondes EM dans le vide ; E1 Signaux périodiques : 
spectre. 
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A) Propagation d’une OPPM transverse dans un plasma dilué 

1) Interaction onde EM-plasma – Vecteur densité de courant 

a) Modélisation du plasma 
On considère un plasma constitué d’ions positifs, de charge +𝑒 et de masse 𝑚𝑖, et d’électrons, de charge 

−𝑒 et de masse 𝑚𝑒. Le plasma comporte autant d’ions que d’électrons, il est globalement neutre et on 
considère qu’il est aussi localement neutre ainsi les densités volumiques d’ions et d’électrons sont égales  

et uniformes, notées 𝒏∗ (USI : m-3).  
On suppose 𝒏∗ suffisamment faible : on parle de plasma dilué / peu dense. Ainsi, les interactions entre 

particules chargées du plasma sont négligées : mouvement des porteurs de charges sans frottement. 
 

b) Expression du champ électromagnétique 
On s’intéresse à la propagation selon +𝑢𝑥⃗⃗⃗⃗ ⃗ dans le plasma d’une pseudo(*)-onde PPM électromagnétique 

transverse.  
 

Son champ électrique s’écrit en notation complexe :  

𝑬⃗⃗⃗(𝒙,𝒕) = 𝑬𝟎
⃗⃗ ⃗⃗ ⃗𝒆𝒊(𝝎𝒕−𝒌∙𝒙) 

Avec :  
𝜔 la pulsation de l’émetteur de l’onde ; 

𝒌⃗⃗⃗ = 𝒌𝒖𝒙⃗⃗ ⃗⃗ ⃗ le vecteur d’onde avec 𝒌 le nombre d’onde angulaire qui, dans le plasma, peut être 

complexe(*) : 𝒌 = 𝒌′ − 𝒊𝒌′′ qu’on cherche à déterminer au § A.3 ; 

𝐸0
⃗⃗⃗⃗⃗ ⊥ 𝑘⃗⃗ puisque l’onde est transverse. 

 
De même, on écrit : 

𝑩⃗⃗⃗(𝒙,𝒕) = 𝑩𝟎
⃗⃗⃗⃗⃗⃗ 𝒆𝒊(𝝎𝒕−𝒌∙𝒙) 

 

Rappel ChEM5 : Avec cette représentation complexe, le vecteur symbolique nabla s’écrit : 𝛁⃗⃗⃗ = −𝒊𝒌𝒖𝒙⃗⃗ ⃗⃗ .⃗ 

Rq : En notation complexe, l’équation de Maxwell-Gauss s’écrit : −𝑖𝑘𝑢𝑥⃗⃗⃗⃗ ⃗. 𝐸⃗⃗ =
𝜌

𝜀0
 

L’onde étant transverse, 𝑘⃗⃗ . 𝐸⃗⃗ = 0 ainsi on vérifie que le plasma est localement neutre : 𝜌 = 0 et que la 

densité volumique des électrons est égale à celle des ions. 
 
 
c) Mouvement des particules chargées constitutives du plasma 

Sous l’action du champ électromagnétique, les particules chargées du plasma vont se mettre en 
mouvement. Cependant, puisque 𝒎𝒊 ≫ 𝒎𝒆, la vitesse des ions est négligeable par rapport à celle des 

électrons et on s’intéresse seulement au mouvement des électrons. 
Par ailleurs, les électrons sont supposés être non relativistes i.e. que leur vitesse est très inférieure à 𝑐, 

célérité de la lumière dans le vide. 
 

 Exercice classique : Par une étude mécanique d’un électron, établir l’équation du mouvement. 
i) Approximations à justifier : le poids, les forces de frottements et la composante magnétique de la force de 

Lorentz sont négligeables devant la composante électrique de la force de Lorentz. 

ii) Montrer que le vecteur vitesse 𝑣⃗ d’un électron situé en 𝑀 vérifie l’équation : 𝑚𝑒
𝑑𝑣⃗⃗

𝑑𝑡
= −𝑒 ∙ 𝐸⃗⃗(𝑀,𝑡). 

 Le champ électrique varie sinusoïdalement en fonction du temps à la pulsation 𝜔. D’après l’équation ci-

dessus, l’électron a un mouvement d’oscillation de même pulsation 𝜔 que le champ.  

Pour un électron non relativiste, 
𝑑𝑣⃗⃗

𝑑𝑡
≈

𝜕𝑣⃗⃗

𝜕𝑡
⟹ 𝒎𝒆

𝝏𝒗⃗⃗⃗

𝝏𝒕
= −𝒆 ∙ 𝑬⃗⃗⃗(𝑴,𝒕)   
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d) Vecteur densité de courant – Conductivité électrique complexe du plasma 

Dans le plasma où se propage une pseudo-onde PPM électromagnétique, la représentation complexe du 

vecteur densité de courant s’écrit : 

𝒋 = 𝜸 ∙ 𝑬⃗⃗⃗ 

Avec 𝛾 = −𝑖
𝑛∗𝑒²

𝑚𝑒𝜔
 la conductivité électrique complexe du plasma. 

 Exercice classique : Etablir cette relation.  
i) Exprimer le vecteur densité de courant 𝑗 dû au mouvement des électrons en fonction de 𝑒, 𝑣⃗ et 𝑛∗. 
ii) En RSF, on introduit 𝑗(𝑥, 𝑡) = 𝑗0⃗⃗⃗ ⃗𝒆𝒊(𝝎𝒕−𝒌∙𝒙). Exprimer 𝑣⃗(𝑥, 𝑡) avec l’équation du mouvement établie au § c 

transposée en notations complexes puis conclure sur 𝑗(𝑥, 𝑡). 

 
Rq : Si on avait tenu compte du mouvement des ions, on aurait : 

𝛾 = −𝑖
𝑛∗𝑒2

𝜔
(

1

𝑚𝑒

+
1

𝑚𝑖

) 

Avec 𝑚𝑖 ≥ 𝑚𝑛𝑢𝑐𝑙é𝑜𝑛 ≈ 2000 ∙ 𝑚𝑒, on a effectivement : 𝛾 ≈ −𝑖
𝑛∗𝑒²

𝑚𝑒𝜔
. 

 
Conséquences : 

La conductivité électrique complexe est un imaginaire pur de partie imaginaire négative : 𝛾 = −𝑖
𝑛∗𝑒²

𝑚𝑒 𝜔
.  

→ Le déphasage de 𝑗 par rapport à 𝐸⃗⃗ vaut −
𝜋

2
 𝑟𝑎𝑑 : 𝑗 et 𝐸⃗⃗ sont en quadrature de phase.  

→ La puissance volumique moyenne cédée par le champ électromagnétique aux porteurs de charges est 

nulle. Le plasma est un milieu non absorbant. En effet :  

𝑃𝑉 = 𝑗 ⃗⃗⃗ ∙ 𝐸⃗⃗ 

⟹ 〈𝑃𝑉〉 =
1

2
𝑅𝑒 (𝑗 ∙ 𝐸∗⃗⃗⃗⃗ ⃗) =

1

2
𝑅𝑒 (𝛾 ∙ 𝐸⃗⃗ ∙ 𝐸⃗⃗∗) =

1

2
|𝐸⃗⃗|

2
𝑅𝑒 (𝛾) = 0 

Ceci est cohérent avec l’hypothèse d’absence de frottements dans un plasma dilué. 
 
 
 
 
 

2) Equation de propagation 

Equations de Maxwell en régime variable dans un plasma dilué et localement neutre (𝜌 = 0 et 𝑗 = 𝛾 ∙ 𝐸⃗⃗): 

Maxwell-Gauss 𝑑𝑖𝑣 𝐸⃗⃗(𝑀,𝑡) =                                        

Maxwell-flux ou -Thomson 𝑑𝑖𝑣 𝐵⃗⃗(𝑀, 𝑡) =                                         

Maxwell-Faraday 𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗ 𝐸⃗⃗(𝑀, 𝑡) =                      

Maxwell-Ampère 𝑟𝑜𝑡⃗⃗⃗⃗ ⃗⃗⃗ 𝐵⃗⃗(𝑀,𝑡) =                  

 

Dans un plasma dilué et localement neutre, le champ 𝐸⃗⃗ vérifie l’équation linéaire aux dérivées partielles : 

∆𝐸⃗⃗ = 𝜇0𝛾
𝜕𝐸⃗⃗

𝜕𝑡
+

1

𝑐2

𝜕2𝐸⃗⃗

𝜕𝑡2                        avec 𝑐 =
1

√𝜀0𝜇0
 

 Exercice classique : Compléter les équations de Maxwell ci-dessus et établir l’équation de propagation 
en utilisant la méthode décrite au ChEM5 p.2. 
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3) Relation de dispersion – Pulsation plasma 

a) Démonstration 

Dans le plasma, 𝑘 vérifie la relation de dispersion : 

𝒌² =
𝟏

𝒄𝟐
(𝝎𝟐 − 𝝎𝒑

𝟐) 

Avec 𝜔𝑝  la PULSATION PLASMA : 𝜔𝑝 = √
𝑛∗𝑒²

𝑚𝑒𝜀0
 

 Démonstration à connaître : établir cette relation en utilisant la méthode A décrite au ChEM5 p.8. 
 

Rq : Une relation de dispersion de la forme : 𝑘² =
1

𝑐2 (𝜔2 − 𝜔𝑝
2) est appelée relation de Klein-Gordon. 

 
 
b) Interprétation – Pulsation de coupure 
La pulsation plasma joue un rôle déterminant pour la propagation : 

- Si 𝝎 < 𝝎𝒑, 𝑘² < 0 donc 𝑘 est un imaginaire pur : 𝒌 = −𝒊𝒌′′ avec 𝑘 ′′ =
1

𝑐
√𝜔𝑝

2 − 𝜔2 ≝
1

𝛿
 

Pour une onde polarisée rectilignement selon 𝑢𝑦⃗⃗ ⃗⃗ ,⃗ on a :   

𝐸⃗⃗(𝑥, 𝑡) = 𝐸0 𝑒𝑖𝜔𝑡𝑒−𝑥 𝛿⁄ ∙ 𝑢𝑦⃗⃗ ⃗⃗  ⃗

⟹ 𝑬⃗⃗⃗(𝒙, 𝒕) = 𝑬𝟎𝒆−𝒙 𝜹⁄ 𝒄𝒐𝒔(𝝎𝒕 + 𝝋𝟎)𝒖𝒚⃗⃗ ⃗⃗  ⃗

Si 𝝎 < 𝝎𝒑, on a une décroissance exponentielle de l’amplitude selon la direction de propagation 

de l’onde. L’onde est stationnaire et spatialement amortie : on parle d’ONDE EVANESCENTE.  
⟹ Si 𝝎 < 𝝎𝒑, l’onde ne peut pas se propager dans le plasma : domaine réactif du plasma.  

 

- Si 𝝎 > 𝝎𝒑, 𝑘² > 0 donc 𝑘 est réel : 𝒌 = 𝒌′ 

𝑘 ′ =
1

𝑐
√𝜔2 − 𝜔𝑝

2 ≝ 𝑘 

Pour une onde polarisée rectilignement selon 𝑢𝑦⃗⃗ ⃗⃗ ,⃗ on a :   

𝐸⃗⃗(𝑥, 𝑡) = 𝐸0 𝑒𝑖(𝜔𝑡−𝑘𝑥) ∙ 𝑢𝑦⃗⃗ ⃗⃗⃗ 

⟹ 𝑬⃗⃗⃗(𝒙, 𝒕) = 𝑬𝟎𝒄𝒐𝒔(𝝎𝒕 − 𝒌𝒙 + 𝝋𝟎)𝒖𝒚⃗⃗ ⃗⃗  ⃗
⟹ Si 𝝎 > 𝝎𝒑, on obtient une « vraie » onde progressive : 

domaine de transparence du plasma.  

 

Bilan : Vis-à-vis des ondes électromagnétiques, le plasma agit comme un filtre passe-haut de pulsation de 

coupure 𝝎𝒑. 

 

Aspect énergétique : 

Grâce à l’équation de Maxwell-Faraday, on peut déterminer le champ 𝐵⃗⃗ à partir du champ 𝐸⃗⃗. 

- Pour l’onde évanescente, on a 𝐵⃗⃗ et 𝐸⃗⃗ en quadrature de phase. 

- Pour l’onde progressive, on a 𝐵⃗⃗ et 𝐸⃗⃗ en phase. 

Ainsi, 〈𝛱⃗⃗⃗ 〉 = 0⃗⃗ pour une onde évanescente et 〈𝛱⃗⃗⃗ 〉 ≠ 0⃗⃗ pour une onde progressive. Ainsi, contrairement à 

une onde progressive, une onde évanescente ne transporte aucune énergie dans le plasma.  
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c) Cas de l’ionosphère – ODG de 𝝎𝒑 

L’ionosphère est la partie de la haute atmosphère (80 à 800 km d’altitude en plusieurs couches) où les gaz 

sont ionisés par le rayonnement UV et X provenant du Soleil. On peut représenter le phénomène 
d’ionisation par la réaction d’équation :  

A + photon → A+ + e- 

Avec A une molécule ou un atome 
La densité volumique d’électrons 𝑛∗  au sein de l’ionosphère dépend fortement du flux solaire. Au 

maximum, on a 𝑛∗ = 106 𝑐𝑚−3. 
 Exercice classique :  

i) En utilisant la valeur maximale de la densité volumique d’électrons 𝑛∗ dans l’ionosphère, déterminer la 
valeur de la fréquence plasma de l’ionosphère. 

ii) Vérifier la cohérence de cette valeur avec : 
- l’expérience de G. Marconi, cf p.1 ; 

- les valeurs de fréquence des communications entre un satellite et le sol : ~ 100 MHz ; de la télévision par 
satellite et du système GPS : ~ 10 GHz. 

 

ODG à retenir : Pour l’ionosphère, 𝒇𝒑 ≈ 𝟏𝟎 𝑴𝑯𝒛. 
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4) Vitesse de phase – Phénomène de dispersion 

 Pour une pseudo-OPPM, 𝑘 = 𝑘 ′ − 𝑖𝑘′′ et on introduit la VITESSE DE PHASE v𝜑 : 

𝐯𝝋 =
𝝎

𝒌′
 

Elle correspond à la vitesse de propagation (de la phase) de la pseudo-OPPM.   

 

Pour une OPPM de pulsation 𝜔 > 𝜔𝑝 se propageant dans un plasma, on a : 

𝐯𝝋 =
𝒄

√𝟏 − (
𝝎𝒑

𝝎
)

𝟐
 

 Exercice classique : Etablir ce résultat en exploitant la relation de dispersion. 

 

Allure de la courbe et commentaires : 
- Pour 𝝎 ≫ 𝝎𝒑, 𝐯𝝋 ≈ 𝒄 : les variations du champ EM sont très 

rapides, les électrons du plasma ne peuvent donc pas les suivre. Les 
interactions onde-plasma sont négligeables et on retrouve les 
propriétés de propagation dans le vide, d’où v𝜑 ≈ 𝑐. 

- On a v𝜑 ≥ 𝑐. 

Rappel ChEM5 : Une OPPM est un modèle idéalisé qui n’existe pas 
dans la réalité, une onde réelle est une superposition d’OPPM. 

La vitesse de phase n’a donc aucune réalité physique i.e. qu’elle 

ne correspond pas à la vitesse de propagation de l’énergie, cf § B.3 

et annexe 1. L’inégalité v𝜑 ≥ 𝑐  n’est donc pas incohérente !  

 

 Un milieu tel que 𝐯𝝋 dépend de la pulsation 𝝎 de l’OPPM considérée est un milieu DISPERSIF.  

Dans un milieu dispersif, une onde physique réelle, somme d’OPPM, va se déformer au cours de sa 

propagation : on parle de phénomène de DISPERSION, cf détails au § B.3. 

Le vide est un milieu non dispersif (∀ 𝜔, 𝑣𝜑 = 𝑐, cf ChEM5). 

Le plasma est un milieu dispersif. 

Rq :  

- Pour un milieu transparent, on peut introduire 𝑛 =
𝑐

𝑣𝜑
 l’indice du milieu. Dans le plasma, pour 

𝜔 > 𝜔𝑝, 𝑛 = √1 − (
𝜔𝑝

𝜔
)

2

< 1. Pour un milieu dispersif, 𝑛 dépend de la pulsation 𝜔 de l’OPPM 

considérée → Analogie avec les milieux optiques dispersifs tels que 𝑛 dépend de la longueur d’onde 
dans le vide 𝜆0 de la radiation considérée. 

- Le caractère dispersif du plasma est relié à la non linéarité de la relation de dispersion. 
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B) Propagation d’un paquet d’ondes dans un milieu dispersif 
On va étudier l’influence du phénomène de dispersion sur la propagation des ondes réelles qui sont des 
superpositions d’ondes monochromatiques. Le milieu dispersif (par exemple un plasma dans son domaine 

de transparence → 𝑘 = 𝑘′ ≝ 𝑘) est caractérisé par la relation de dispersion 𝑘(𝜔), supposée connue.  

On note 𝑠(𝑥, 𝑡) une composante quelconque du champ 𝐸⃗⃗ de l’onde étudiée se propageant selon +𝑢𝑥⃗⃗⃗⃗ .⃗ 
 

1) Paquet d’ondes 

DEFINITION : 
On appelle PAQUET D’ONDES la superposition d’un nombre fini ou infini d’OPPM de pulsations proches 

d’une pulsation moyenne 𝝎𝟎 : les OPPM sommées ont des pulsations :  

𝜔 ∈ [𝜔0 −
∆𝜔

2
, 𝜔0 +

∆𝜔

2
] 

avec ∆𝝎 la largeur spectrale de l’onde telle que ∆𝝎 ≪ 𝝎𝟎. 

 
Le signal correspondant à un paquet d’ondes se propageant selon +𝑢𝑥⃗⃗⃗⃗ ⃗ s’écrit : 

𝒔(𝒙, 𝒕) = 𝑹𝒆 ( ∫ 𝑨(𝝎) ∙ 𝒆𝒊(𝝎∙𝒕−𝒌(𝝎)∙𝒙) ∙ 𝒅𝝎

∞

𝝎=𝟎

)  

 
Où la fonction d’amplitude 𝑨(𝝎) ≈ 𝟎  

pour 𝝎 < 𝝎𝟎 −
∆𝝎

𝟐
 et pour  𝝎 > 𝝎𝟎 +

∆𝝎

𝟐
 avec ∆𝝎 ≪ 𝝎𝟎 . 

 
 
 
 

Le paquet d’ondes est un signal à durée limitée dans le temps, durée ∆𝑡 d’autant plus élevée que la largeur 
spectrale ∆𝜔 est faible. On admet que : 

∆𝝎 ∙ ∆𝒕 ≈ 𝟐𝝅 

Rq : Cette relation est cohérente avec le cas limite d’une onde monochromatique : on a ∆𝑡 → ∞ 
puisque ∆𝜔 = 0. 
 
NB : Notion de paquet d’ondes semblable à la notion de train d’ondes en optique. 
 
 
 
 
 
 

 

  

∆𝜔 

|𝑨(𝝎)| 
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2) Exemple de la somme de 2 OPPM de pulsations proches : doublet spectral 

On considère d’abord le cas simple d’un paquet d’ondes contenant deux OPPM de même amplitude 𝑠0 et 

de pulsations 𝜔1 = 𝜔0 −
∆𝜔

2
 et 𝜔2 = 𝜔0 +

∆𝜔

2
 avec ∆𝝎 ≪ 𝝎𝟎 . 

Le signal correspondant s’écrit : 
𝑠(𝑥, 𝑡) = 𝑠0 ∙ cos(𝜔1 ∙ 𝑡 − 𝑘(𝜔1) ∙ 𝑥) + 𝑠0 ∙ cos(𝜔2 ∙ 𝑡 − 𝑘(𝜔2) ∙ 𝑥 + 𝜑) 

 
 Exercice classique :  
i) Représenter le spectre de cette onde en repérant 𝜔0  et ∆𝜔. 

ii) On rappelle la relation de trigonométrie à connaître : 𝐜𝐨𝐬(𝒑) + 𝐜𝐨𝐬(𝒒) = 𝟐 𝐜𝐨𝐬 (
𝒑+𝒒

𝟐
) ∙ 𝐜𝐨𝐬 (

𝒑−𝒒

𝟐
).  

On pose 𝑘0 = 𝑘(𝜔0 ) et ∆𝑘 = ∆𝜔 ∙
𝑑𝑘

𝑑𝜔
(𝜔0), à l’aide de DL1 en ∆𝜔, montrer que : 

 

𝑠(𝑥,𝑡) = 2𝑠0 [cos (𝜔0 ∙ 𝑡 − 𝑘0 ∙ 𝑥 +
𝜑

2
) ∙ cos (

∆𝜔

2
∙ 𝑡 −

∆𝑘

2
∙ 𝑥 +

𝜑

2
)] 

 
 

 
 

On peut réécrire 𝑠(𝑥,𝑡)  sous la forme : 

𝑠(𝑥,𝑡) = 2𝑠0 [cos (𝜔0 ∙ (𝑡 −
𝑘0

𝜔0

∙ 𝑥) +
𝜑

2
) ∙ cos (

∆𝜔

2
∙ (𝑡 −

𝑑𝑘

𝑑𝜔
(𝜔0) ∙ 𝑥) +

𝜑

2
)] 

 

⟺ 𝑠(𝑥, 𝑡) = 2𝑠0 [cos (𝜔0 ∙ (𝑡 −
𝑥

v𝜑(𝜔0 )
) +

𝜑

2
) ∙ cos (

∆𝜔

2
∙ (𝑡 −

𝑥

v𝑔 (𝜔0)
) +

𝜑

2
)] 

Avec  𝐯𝝋(𝝎𝟎) =
𝝎𝟎

𝒌𝟎
 la vitesse de phase d’une onde monochromatique de pulsation 𝜔0  ;  

𝐯𝒈(𝝎𝟎) =
𝒅𝝎

𝒅𝒌
(𝝎𝟎) =

𝟏
𝒅𝒌

𝒅𝝎
(𝝎𝟎)

 la vitesse de groupe : elle correspond à la vitesse de propagation de 

l’enveloppe du paquet d’ondes. 
 

Représentation graphique de 𝑠(𝑥, 𝑡) en fonction de 𝑥 à deux instants 𝑡 = 0 et 𝑡1 > 0 : 

 
 

 

  

Variation rapide 𝜔0 ≫ ∆𝜔 
→ « porteuse » 

Variation lente 
→ « enveloppe » 

∆𝑥𝜑 ∆𝑥𝑔 
v𝜑 =

∆𝑥𝜑

𝑡1

    

et    v𝑔 =
∆𝑥𝑔

𝑡1

 

𝑡1 

𝑡 
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3) Généralisation – Vitesse de groupe 

On admet que les résultats obtenus pour la somme de 2 OPPM se généralisent à un paquet d’ondes 
quelconque, cf annexes 2 et 3.  

 On définit la VITESSE DE GROUPE : 

𝐯𝒈 =
𝒅𝝎

𝒅𝒌
=

𝟏

𝒅𝒌
𝒅𝝎

 

 Un paquet d’ondes se met sous la forme d’une onde moyenne (la 
porteuse) de pulsation 𝜔0  se propageant à la vitesse de phase 𝐯𝝋(𝝎𝟎) =

𝝎𝟎

𝒌(𝝎𝟎)
 dont l’amplitude est modulée par une enveloppe se propageant à la 

vitesse de groupe 𝐯𝒈(𝝎𝟎) =
𝒅𝝎

𝒅𝒌
(𝝎𝟎).  

NB :  

- Pour une pseudo-OPPM avec 𝑘 = 𝑘′ − 𝑖𝑘′′, on a 𝐯𝝋 =
𝝎

𝒌′ et 𝐯𝒈 =
𝒅𝝎

𝒅𝒌′.  

- La vitesse de groupe s’identifie généralement à la vitesse de propagation de l’énergie / de 
l’information, cf annexe 1 pour le plasma. Le principe de relativité d’Einstein impose que la vitesse 
de groupe est inférieure à la vitesse de la lumière dans le vide : 𝐯𝒈 < 𝒄. 

 
Les vitesses de phase et de groupe sont a priori différentes et le paquet d’ondes se propage en se 

déformant. En effet, chacune des composantes monochromatiques du groupe « chemine » avec sa propre 
vitesse.  

Dans un milieu dispersif, on observe l’étalement du paquet d’ondes : l’enveloppe s’élargit et son 
amplitude diminue, cf figure ci-dessous. 

 

 

 

Figure 19.8 : Détails sur le paquet d’ondes gaussien, cf annexe 3 
http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/divers/paquet.html 

 

Figure 19.9 : À l’entrée d’un câble coaxial, on envoie un signal pulse rectangulaire. Le signal est observé à la 
sortie du câble de longueur 100 m. On visualise à l’oscilloscope le signal d’entrée (voie CH1) et le signal de 

sortie (voie CH2) (axe des abscisses en 10−7 𝑠). 
 Analyse graphique : Commenter les signaux CH1/2 et déterminer la vitesse de groupe du signal. 

  

http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/divers/paquet.html
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4) Propagation du paquet d’ondes dans un plasma dilué 

On rappelle la relation de dispersion vérifiée dans un plasma pour 𝜔 > 𝜔𝑝  : 

𝑘 =
1

𝑐
√𝜔2 − 𝜔𝑝

2  

 Exercice classique : On considère un paquet d’ondes de pulsation moyenne 𝜔0  et de largeur spectrale 

∆𝜔 ≪ 𝜔0 qui se propage dans un plasma. 
i) Déterminer l’expression de la vitesse de groupe v𝑔 (𝜔0). 

ii) Vérifier que v𝑔 < 𝑐. 

iii) Montrer que v𝑔 ∙ v𝜑 = 𝑐². Retrouver cette relation en différentiant la relation de dispersion écrite sous 

la forme 𝑘² =
1

𝑐2 (𝜔2 − 𝜔𝑝
2). → Ce calcul est le moyen le plus efficace pour arriver à l’expression de la 

vitesse de groupe.  
 

Allure des courbes et commentaires : 
- Dans un plasma, on a donc 𝐯𝒈 ≤ 𝒄 ≤ 𝐯𝝋 : l’enveloppe se propage 

moins vite qu’une unique OPPM. 

- Dans un plasma, on a v𝑔  qui dépend de 𝜔 : v𝑔(𝜔) croissante. 

- Pour 𝝎 ≫ 𝝎𝒑, 𝐯𝒈 ≈ 𝒄 ≈ 𝐯𝝋 : des pulsations très élevées 

correspondent à des variations du champ EM très rapides que les 
électrons du plasma ne peuvent pas suivre.  
On peut alors négliger les interactions onde-plasma et on retrouve 

les propriétés de propagation dans le vide :  
Pour 𝝎 ≫ 𝝎𝒑, le plasma est non dispersif (v𝜑 ≈ 𝑐) et le signal se 

propage à v𝑔 ≈ 𝑐 = 3,00. 108 𝑚. 𝑠−1 sans déformation. 

 

Rq : La relation 𝑣𝑔 ∙ 𝑣𝜑 = 𝑐² est vérifiée pour toute relation de dispersion de type Klein-Gordon. 
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Annexe n°1 : OPPM électromagnétique dans le plasma pour 𝜔 > 𝜔𝑝 – Structure et énergie 

 
En notation complexe, on a : 

〈𝒂. 𝒃〉 =
𝟏

𝟐
𝑹𝒆(𝒂. 𝒃∗)  

 

 

 
 Il s’agit de la vitesse de groupe, cf § B.3. 
Dans un plasma, la vitesse de groupe correspond donc à la vitesse de propagation de l’énergie i.e. de l’information. 
 

avec 𝑢⃗⃗ vecteur unitaire qui donne la 
direction et le sens de propagation.  

𝑛∗ 

𝑛∗ 
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Annexe n°2 : Paquet d’ondes quelconque se propageant selon +𝑢𝑧⃗⃗⃗⃗⃗    

 

 
 
 
  

∆𝜔 

∆𝜔 

∆𝜔 

∆𝜔 

∆𝜔 

∆𝜔 

∆𝜔 ∆𝜔 
∆𝜔 

∆𝜔 

∆𝜔 



 

ChEM6. Ondes EM dans un plasma 13   MP/MPI La Fayette 

Annexe n°3 : Paquet d’ondes Gaussien se propageant selon +𝑢𝑧⃗⃗⃗⃗⃗   

 

 

 

∆𝜔 ∆𝜔 50. 
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