ELECTROMAGNETISME

Chapitre EM7. Ondes électromagnétiques dans un milieu ohmique

r

/.

Les ondes se réfléchissent

entre l'infrarouge et les ondes
de radio dans le spectre
électromagnétique. Elles ont
des fréquences entre 1 et 300
GH:z.

« Schéma de principe d’un four
a micro-ondes.

Principe de fonctionnement en
lien avec une cavité vide
délimitée  par des parois
conductrices, cf § C.6.

sur les parois du four et
s'additionnent pour donner une

V onde stationnaire

Le magnétron émet des ondes
iques dans la
\ cavité du four
% Les micro-ondes sont situées
o
v

Les aliments sont chauffés grace aux
molécules d'eau polaires qu'ils contiennent :
sous l'effet du champs électromagnétique,
la molécule change de polarité 2, 45 milliards
de fois par seconde !

Certaines zones recoivent plus d'énergie que d'autres, mais le plateau
ﬁumant permet d'avoir une meilleure répartition de la chaleur dans I'alimerﬂ

INTRO :

Dans ce chapitre, on étudie la propagation des ondes électromagnétiques dans un milieu ohmique, par exemple
dans un conducteur métallique, ainsi que leur réflexion sur un conducteur parfait.

On établira les différences avec la propagation dans le vide : équation de diffusion, atténuation : « effet de peau ».
Lors de 'étude de la réflexion d’une onde EM sur un dioptre vide / conducteur parfait, on reviendra sur la notion d’ondes
stationnaires et de modes propres.

Buts de ce chapitre : établir I'équation d’évolution d’'une onde électromagnétique (EM) dans un milieu ohmique ; étudier
la réflexion d’'une onde EM sur un conducteur parfait et 'onde EM régnant dans une cavité a une dimension.

Prérequis :

1e année : Superposition d’ondes ; Régime Sinusoidal Forcé ; Mécanique du point.
2¢ année : EM4 Electromagnétisme en régime variable ; EM5-6 Ondes EM dans le vide et dans un plasma; T2/4
Transferts thermiques.
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A) Approximations usuelles dans un milieu ohmique
1) Loi d’Ohm locale

a) Modélisation d’un conducteur métalligue : Modéle de Drude

On considere un métal constitué d’ions positifs fixes et d’électrons de conduction, de charge -e et de
masse m,, libres de se déplacer dans le métal (cf MPSI solide cristallin métallique). On note n* (USI : m>) la
densité volumique d’électrons : n* ~ 1028 m3.

Contrairement au plasma, le métal est un milieu dense, on doit donc tenir compte des collisions entre les
électrons et les cations du réseau.

—

s . . . 7 v NS .
On modélise les collisions par une force de type frottement fluide f = —m, —ouv est la vitesse d’un
c

électron et 7, est un parametre phénoménologique appelé temps de collision ou de relaxation :
~ 10714
T, = s.

b) Expression du champ électromagnétique
Considérons la propagation dans le conducteur métallique d’une pseudo™-onde PPM électromagnétique.

Son champ électrique s’écrit en notation complexe :
E(M,t) = Ege'@kD
Avec w la pulsation de I'émetteur de 'onde ; ¥ = OM le vecteur position ;

=
kle vecteur d’onde; dans le métal, le nombre d’onde angulaire k peut étre complexe(“:

k = k' — ik"" qu’on cherche a déterminer au § B.2 ;
De méme, on écrit :
B(M, 1) = Bye @i 7

Rappel du ChEMS : Avec cette représentation complexe, le vecteur symbolique nabla s’écrit : V= —iE

c) Mouvement des électrons de conduction — Loi d’Ohm locale

Sous I'action du champ électromagnétique, les électrons de conduction vont se mettre en mouvement.

lIs sont supposés étre non relativistes i.e. que leur vitesse est tres inférieure a c, célérité de la lumiére dans
le vide ainsi, comme dans le cas du plasma, on peut négliger le terme magnétique de la force de Lorentz
devant le terme électrique.

On cherche a exprimer le vecteur densité de courant associé au mouvement des électrons de conduction.

Un milieu ohmique vérifie la loi d’ohm locale™ :

j=YE
ou y (parfois noté o) est la conductivité électrique (USI: Q" t.m™1 = S.m™1):y € R*.
ODG: vy = 6.107Q~1.m™? pour le cuivre.
La loi d’Ohm traduit la mise en place d’un courant de conduction (déplacement d’e’) sous I’action de E.

. (s , 1
@) La loi d’ohm est vérifiée tant que les fréquences ne sont pas trop grandes : f << 1013 Hz ~ py—
C

< Exercice classique :

. p . . dv _ 0v . > [ L
i) Sachant que pour un électron non relativiste — = montrer que le vecteur vitesse v d’un électron situé

at ot
L oep grs . w v -e =
en M vérifie I'équation : —+ — = —- E(M, t).
at T, me

=> Sous I'effet du champ, I’électron a un mouvement d’oscillation de méme pulsation w que le champ.
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ii) Exprimer le vecteur densité de courant j di au mouvement des électrons en fonction de e, U et n*.

iii) En RSF, on introduit les notations complexes de v et j. Exprimer U avec I'équation du mouvement

transposée en notations complexes puis en déduire que la conductivité électrique complexe du métal

s’écrit: y = LZTC
= me(1+it.w)

iv) Pour w « assez faible », simplifier cette expression pour retrouver la loi d’Ohm locale avecy € R*.

Rq : Pour f > 1013 Hz, y — 0 : les e ne parviennent pas d suivre les variations trop rapides du champ.

Conséquence : Le champ fournit toujours de la puissance au milieu ohmique :
2
P, =7.E =y E> =’7>0

C’est I'effet Joule. Un milieu ohmique est un milieu absorbant.

2) Neutralité électrique locale

Un milieu ohmique est globalement neutre (dans le cas du cuivre, chaque atome Cus) libére un électron et

devient un cation Cu’). Il est également localement neutre a tout instant : .

< Exercice classigue : Démontrer la neutralité électrique locale du milieu ohmique.

On se place en un point M quelconque et on note py la valeur initiale de p(M, t).

i) Etablir I'équation différentielle vérifiée par p(M,t) en utilisant I'équation locale de conservation de la
charge, la loi d’'Ohm locale et I'équation de Maxwell-Gauss.

ii) Introduire un temps caractéristique tde variation de p(M, t) et donner son ODG pour conclure.

3) Courants de conduction et de déplacement — Régime lentement variable

Dans le cas général, I'’équation de Maxwell-Ampére s’écrit :

OE

i a

Avec Jp = & % la densité du courant de déplacement et dans un milieu ohmique, J° = yﬁ : la densité du

10t B = o] + Ho&o

courant de conduction.

oge - 7’ . . *
Dans un milieu ohmique, en régime lentement variable'”, .

pour f « 107 Hz ~ 2—11“ (condition vérifiée dans le cadre de la validité de la loi d’Ohm : f < 1013 Hz).

| D Exercice classique : Démontrer ce résultat.

Conséquence : Dans un milieu ohmique en régime lentement variable, le théoreme d’Ampere s’énonce
comme en magnétostatique.

4) Bilan : Equations de Maxwell dans un milieu ohmique en régime lentement variable

D’aprés les § précédents, p ~ 0;7 = vE; |[j5ll < |I7’Il d’ou la simplification des équations de Maxwell :

Maxwell-Gauss div E(M, t) =

Maxwell-flux ou -Thomson | div B(M, t) =

Maxwell-Faraday rot E(M, t) =
Maxwell-Ampére rot B(M,t) =
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B) Onde électromagnétique dans un milieu ohmique en régime

lentement variable — Effet de peau

1) Equation de diffusion dans un milieu ohmique

Dans un milieu ohmique en régime lentement variable, le champ électrique vérifie I'équation :

oF
at

AE = poy

< Exercice classique : Démontrer cette équation en utilisant la méthode décrite au ChEMS5 p.2.

Par un raisonnement analogue, on obtient :

Et avec la loi d’Ohm locale, on obtient :

- B
AB = poy -
> ay
4y = Mo)’a—]t

Analyse de I’équation : analogie avec la conduction thermique et comparaison a I’équation de d’Alembert :

Onde EM dans le vide

Onde EM dans un milieu ohmique

« Onde thermique »

=_1 9%E
"~ c? a2
Equation de d’Alembert

- oE
AE = Ho¥ 57

1
On peut poser D = —
P P HoY

- 1 0T
" D at
Avec D = A
pc

Equation de la chaleur sans

source, cf ChT2/4

Equations aux dérivées partielles linéaires et a coefficients constants

Terme en dérivée 2™ temporelle
— Phénomeéne invariant par
renversement du temps

Terme en dérivée 1° temporelle
— Phénomeéne irréversible

Equation de propagation Equation de diffusion

2) Solution de I’équation — Epaisseur de peau

Position du probléme :
On suppose gu’un milieu ohmique occupe le demi-espace z > 0.

On suppose que le champ électrique est polarisé rectilignement selon e, : E = E(z, t)e, et qu'il se propage
selon+¢,:k=ke,.

Rq : Les champs E et B sont transverses d’apres les équations de Maxwell-Gauss et Maxwell-flux.

La notation complexe du champ électrique est donc:
E(z,t) = Egei@t-kzto0)g>
Rappel : Dans le milieu ohmique, k est, a priori, complexe (pseudo-OPPM).
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Dans un milieu ohmique, la relation de dispersion est :
k? = —iopyy

/ 2 .
On pose o= v grandeur homogene a une longueur.
0

k est donc complexe et vérifie: k = k' — ik" = + (% + %l) (racine carrée complexe).

S Démonstration a connaitre : établir cette relation (cf méthode ChEM5) ; en déduire les expressions du
champ électrique complexe puis du champ électrique réel.

NB: La relation de dispersion s’obtient aussi pour le cas plus général ou E(M,t) =Eei(wt‘5'7);

B(M,t) = Byel @tk (¢f p.2) et V> —ik ; %—) +iw.

Analyse du champ électrique réel : E,
N _z z —
E = Eoe( 8)cos (wt 3 + (po) e,
¢ Le facteur |cos (wt - g + (po) correspond au phénomene de .
ohmique

propagation selon +u,, identique au modéle de I'OPPM. Il fait
intervenir la partie réelle k' du vecteur d’onde.

z

¢ Le facteur e(_E) correspond au phénomeéne d’ATTENUATION de
I'onde, suivant + u,, dans le milieu ohmique. Il fait intervenir la partie
imaginaire k"' du vecteur d’onde (*). L’atténuation est due a I'absorption
d’énergie par le milieu ohmique : c’est I'effet Joule.

6= p ?/w est la longueur caractéristique d’atténuation de I'onde appelé EPAISSEUR DE PEAU.
0

(*) Notion de pseudo-OPPM : I'onde est au sens strict plane (plans d’onde : z = cste) et monochromatique
(dépendance temporelle sinusoidale avec une unique pulsation w) mais elle n’est pas progressive car elle ne

peut pas se mettre sous la forme : E(z, t) = f(t - %)

Analyse graphique :

L'amplitude de I'onde est quasi-nulle au-dela d’une distance = 54. Une oscillation spatiale de I'onde

, . 21 . . . . .
s’étend sur une distance = P 21§ = 66. Ainsi, une seule oscillation est visible.

Rq :
w 2w

- On peut introduire la vitesse de phase de la pseudo-OPPM : v, = o = oy
0

Elle dépend de w ainsi un milieu ohmique est dispersif.

- On obtient le champ magnétique avec I'équation de Maxwell-Faraday et la densité de courant avec
la loi d’Ohm.

- Rappel : Dans un plasma occupant le demi-espace z > 0, pour w < w,, k est un imaginaire pur .
Pour un champ électrique polarisé rectilignement selon e,, on a une onde évanescente :
E (z,t) = Eoe‘z/ Scos(wt + @o)e, a distinguer d’une onde qui se propage dans un milieu absorbant
tel qu’un milieu ohmique.
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3) Effet de peau

¢ Influence de la fréquence pour un conducteur en cuivre :
Fréquence 50 Hz (secteur) 1 MHz (radio) 10 GHz (nondes) 1 THz (IR)
0 9 mm 60 um 0,6 pm 65 nm

Lorsqu’une onde électromagnétique, de fréquence élevée, est envoyée sur un conducteur, cette onde et

. . . P . 2
le courant sont non nuls uniquement au voisinage de la surface dans une couche d’épaisseur § = /u e
0

On parle d’EFFET DE PEAU étant donné le caractere superficiel de la répartition des champs EM et des
courants dans le conducteur.
On introduit alors (§ C.3) une densité de courant surfacique.

Conséguences — Cas d’'un conducteur cylindrigue : Epaisseur de peau
On admet que les résultats établis en géométrie cartésienne se généralisent
a un conducteur cylindrique de rayon a d’axe (0z) parcouru par un courant Diamétre dufil2a
sinusoidal j = j(r, t)e, :

E(r,t) = Ejel@t-k(a-n+eo)g>

Evolution de & lorsque la fréquence augmente :

A la fréquence du secteur EDF, pour les fils domestiques de sections normalisées a 1,5 mm? pour
I’éclairage, a 2,5 mm? pour les prises de courant et 4 mm? pour les fours ou plaques électriques, soit des
rayons respectifs de 0,7 mm ; 0,9 mm et 1,1 mm, I'effet de peau n’a pas d’incidence (6§ =9 mm).

Aux fréquences plus élevées, I'effet de peau entraine une augmentation de la résistance du conducteur
puisque sa section utile diminue.

Aux fréguences des ondes radio, seule une peau de 60 um « travaille ». On peut alors utiliser un fil
constitué de multiples brins (diam. 0,05 mm environ) tressés ensemble, cf figure 1.

Par ailleurs, pour le transport d’énergie a haute fréguence, on peut utiliser des guides d’ondes : le signal
est guidé entre deux cylindres métalliques séparés par un diélectrique (cable coaxial, cf figure 2).

Figure 1 Figure 2
~

A : Gaine extérieure en plastique

B : Blindage en cuivre

C:Isolant

D : Conducteur central (dme) en cuivre

Cable électrique a fils de Litz : il est constitué de plusieurs
fils isolés électriquement les uns des autres. L'ensemble des
fils est gainé pour former un seul cable.

¢ Influence du milieu :

L'épaisseur de peau 6 dépend aussi de y la conductivité du milieu. Le phénomeéne d’effet de peau est

d’autant plus marqué que le milieu est bon conducteur, cf « limite du conducteur parfait » au § C.1.

o _ 500 .
Rq : L’eaqu de mer a une conductivité y ~ 1 S.m™1, § ~ T en m avec f en Hz. Pour communiquer, les sous-

marins doivent utiliser des ondes radio de trés basse fréquence : entre 3 et 30 kHz.
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C) Réflexion d'une OPPM sur un conducteur parfait

Position du probleme — Expression de I'onde incidente
Considérons un conducteur occupant tout le demi-espace z > 0, le demi-espace z < 0 étant occupé par
un milieu vide de charge et de courant (par ex, de l'air). 1 vide conducteur

Soit une onde incidente PPM polarisée rectilignement selon
(Ox) se propageant dans le vide et qui frappe le dioptre z =0
en incidence normale :

E; = Egcos(wt — kz)e, < F; = Eoei(wt—kz)-é;

E;

® B AVAVAVAS

I ) 3 — w— 4, . . . . .
On note k, son vecteur d’onde : k, = ke, = ~e; (d’apres la relation de dispersion dans le vide).

But : Déterminer ce qu’il advient lorsque cette onde atteint le conducteur.

1) Conducteur parfait

DEFINITION :

CONDUCTEUR PARFAIT = Conducteur dont la résistivité est nulle. Autrement dit : y (conductivité) — oo.

Or, la puissance volumique dissipée par effet Joule dans un conducteur est :
P, =T.E =y E?
Pour un conducteur parfait, il faut que E2 — 0 pour que cette puissance volumique reste finie.
= au sein d un conducteur parfait,f =0

s )« . 0B —= = = .
On déduit de I'’équation de Maxwell-Faraday que Pl —rot E = 0 & seul un champ B statique peut
exister dans un conducteur parfait. En se limitant aux champs variables temporellement,

= au sein d'un conducteur parfait, B = 0
E-3
at : :
= au sein d un conducteur parfait,j = 0
On déduit de I'’équation de Maxwell-Gauss que Eﬁ =divE = 0.
0

On déduit de I'équation de Maxwell-Ampére que p,j]” = rot B - Ho€o

= au sein d un conducteur parfait, p = 0

BILAN : En régime variable, au sein d’'un conducteur parfait,

- les champs E et B sont nuls

- la densité volumique de charges p et le vecteur densité de courant volumique j sont nuls
Les charges et les courants ne peuvent étre que surfaciques, cf § C.3.d.

NB : Autre raisonnement possible :
D’aprées I’étude du § B, I'épaisseur de peau s’écrit § = /u ?@.
0

Dans le cas d’un conducteur parfait en régime variable (w # 0), y = c0o = § — 0. Ce qui conduit a des

champs E et B nuls au sein du conducteur parfait. Puisap = 0etj = 0 via les équations de Maxwell.

On peut assimiler un conducteur a un conducteur parfait si§ <K 4 = % la longueur d’onde dans le vide et

si & négligeable vis-a-vis des dimensions géométriques du conducteur.

Cf Animation www.f-legrand.fr/scidoc/simul/ondes/reflexionConducteur.htm! permettant de visualiser 'onde EM a
I'interface entre le vide et un conducteur (ondes incidente et réfléchie en bleu ; onde totale en rouge;
abscisses graduées en termes de longueur d’onde dans le vide).

On a la limite du conducteur parfait pour § /1 = 0.

R = coefficient de réflexion en énergie.

OSSN N

PPNy
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2) Conditions aux limites a l'interface — Relations de passage

Considérons une interface entre deux milieux ® et @, de normale 71, _,,.

Lorsque des charges ou des courants sont fortement localisés au voisinage de cette interface (répartition
surfacique), on peut avoir discontinuité des champs EetB (cf ChEM1-2). Les conditions aux limites sont
données par les relations de passage, admises et qui seront fournies par I'’énoncé.

De part et d’autre d’un point M, se trouvant sur l'interface, M1 o
— . o(My,t) milieu @ /
v Ez(MoJr; t) —E;(My~,t) = . -2 ME /
t, . - . 0 . milieu @
Bz(Mo ) t) —Bi(My~,t) = pojs (Mp, t) ATy, ¢

Avec o la densité surfacique de charges et J5 le vecteur densité de

courant surfacique a l'interface, et E;/, et By, les champs dans les N
milieux ®/@. Js: 0

— ¢’il y a discontinuité de champ électrique a l'interface, alors elle ne peut concerner que la
composante normale a la surface ;

— ¢’il y a discontinuité de champ magnétique, alors elle ne peut concerner que les composantes
tangentielles a la surface.

Les deux composantes tangentielles du champ électrique et la composante normale du champ

magnétique sont toujours continues a I'interface entre deux milieux.
Les autres composantes peuvent étre discontinues.

3) Onde réfléchie sur un conducteur parfait

a) Continuité du champ électrique tangentiel — Nécessité d’'une onde réfléchie
Dans le cas du dioptre étudié vide/conducteur parfait, les relations de passages donnent :

O'(X,y,t) -
— e

Z

E x,y,z=0"1t)—E x,y,z=07,t) =
Vt,‘v’(x,y) cond( y ) vlde( y ) €

Bco_)nd(x'Y:Z =0%,t) — Byige(x,y,z2=07,t) = ,LLO]?)(X,}/, t)A é)z
Avec E pnq(x,y,z = 0%, t) = 0 pour un conducteur parfait.

— — O-(x’ y) -
= Vt,V(x,y), —E,ge(x,y,z=07,t) = . e,
0
Raisonnons par I'absurde :
Hypothése (H) : on suppose qu’il n’y a pas d’onde réfléchie.
= Epqe(M,t) = E(M, t) = Eycos(wt — kz)e,
La relation de passage impose :
—— O-(x’ y' t) -
Vt,V(x,y), — Eycos(wt)e, = g—ez
0
= en projetant selon (0Ox) : Vt, — Eycos(wt) =0

Seule solution possible : E, = 0 = onde incidente nulle = I’hypothése (H) est donc fausse.

Il faut donc qu’un champ électrique REFLECHI se superpose au champ électrique incident pour que la
continuité du champ électrique tangentiel soit vérifiée en z = 0.

Rq: le phénomene de réflexion ne se limite pas aux ondes A—/ | it
électromagnétiques — réflexion d’une onde se propageant le long d’une ’

corde sur l'extrémité fixe B. Onde réfléchie
A /\/—‘ B
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@® D’apres les informations du sujet, on donne la notation complexe des champs
’ ﬂ* électriques dans le milieu © : incident E et réfléchi E Ona 5 = E + E

b NB : les champs E'_: et E sont transverses car OPP dans le vide.
Dioptre @ vide | @ Milieu ® conducteur parfait = E =0.

/@ ;c;r:;jat::teur ® Exploitation de la relation de passage sur l'interface (S) :
N — o(M,
Vt,VM, € (S), E;(My*,t) —E;(My~,t) = (g O)ﬁl_)z
- - 0

Méthode pour
obtenir les = Vt,VM, € (5), composantes tangentielles du champ électrique continues

caractéristiques | @ par jdentification, on obtient amplitude, phase, polarisation et pulsation de E On
de I'onde -

réfléchie

obtient la norme du vecteur d’onde via la relation de dispersion dans le vide.
® On déduit les champs magnétiques E et E de la relation de structure dans le vide.

b) Expression du champ électrique réfléchi (cours-TD)
On note fr le champ électrique réfléchi et E= E)+E; le
champ électrique résultant dans le vide (z < 0).

Onde incidente

On cherche I'onde réfléchie qui se propage selon —e, sous la
forme d’une OPPM, d’ou en notation complexe : Y Y Vol W W

—

E, = E,,.e!(@rtthkr2) Onde réfléchie

S Exercice classique : Avec la méthode ci-dessus, exprimer les caractéristiques du champ électrique

réfléchi (m, w, et k,.) en fonction de celles du champ électrique incident et des vecteurs de base.

BILAN :
E, = Ejel@wt-k2dg’ < E, = Ey cos(wt — kz)e,
E, = —Eyei@t+kdg’ < E’ = Eycos(wt + kz + m)e,
Les champs électriques Kcident et réfléchi :
- ont la méme amplitude: réflexion sans perte d’énergie ;
- ont la méme pulsation: RSF ;
- se propagent selon la méme direction (loi de Descartes !) mais dans des sens opposés : kT = —f =——e,,

- ont la méme direction de polarisation (e, ici) ;
- sont en opposition de phase en z = 0.

c) Expression du champ magnétique
On obtient SEPAREMENT les champs B incident et réfléchi via la relation de structure :

g i — —_— E e E —_—
B, = Bye'“"*De ] avec B, = 70 & B, = T“cos(wt — kz)e,

— i(wt+kz)5™ _ Eo B _ Eo >
B, = Bye' Je, avec By = = & B, =-‘cos(wt+kz)e,

Méme comparatif que pour les champs électriques incident et réfléchi MAIS :
Contrairement aux champs électriques, les champs magnétiques incident et réfléchi sont en phase en z = 0.

SCHEMA - RESUME :

Vide Conducteur parfait
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Rq : Lors de la réflexion métallique en incidence normale, onarg, = —letrg, = 1.

E,-(z=0",t B, (z=0",t . . , . ..
Avecry, = r(—_) etrg, = r(—_) les coefficients de réflexion en incidence normale.
Ei(z=07,t) Bi(z=07,t)

d) Etat surfacigue du conducteur parfait

Avec les expressions des champs électrique et magnétique réfléchis obtenus et des relations de passage,
on peut déterminer I'existence d’éventuels charges ou courants surfaciques a la surface du conducteur.

Relations de passage dans le cas général :

O-(MOI t) —

Fz)(MO-i-, t) _E)(MO_I t) = n1_>2

Vi, 0

Bz(M0+; t) = Bi(My ™, t) = pojs (Mo, £) ATy,
Dans le cas de I'incidence normale d’une OPPM sur un dioptre @vide/@conducteur parfait situéenz =0 :

— —_— — O-(MO’ t)—>
( O_Evlde(zzo 't):—ez

0
Vt’ ij(MOft)

ko — Bpige(z = 07,t) = o ij(Mo; t) | A e_z)
0
avec E,4.(z=07,t) = E)(z =07,t)+ E_r)(z =07,t) = Eo(cos(wt) — cos(a)t))a =0
= a(My,t) = 0:il n’y a donc pas de charge surfacique a la surface du conducteur parfait.

et Bpgo(z=0",t)=B,(z=0",t) + B, (z=0",t) = %(cos(wt) + cos(wt))e,

— E — . . Y H
= s = 2—2cos(wt)e,]: il y a un courant surfacique a la surface du conducteur parfait, le vecteur
UoC

densité de courant est colinéaire au champ électrique incident.

L'onde incidente engendre un courant a la surface du conducteur. Les électrons étant mis en mouvement
par le champ électrique, les courants ainsi créés sont paralléles a ce dernier. Ces courants oscillants sont a
leur tour une source du champ électromagnétique et sont notamment a I’origine de 'onde réfléchie.

Champ incident

+
= W S, S A - Champ créé par
les courants surfaciques
+*
0
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4) Onde résultante : onde stationnaire

Champ magnétique

— E
Incident B, = ?Ocos(wt — kz)e,
12 . =g EO —
Réfléchi B, = ?cos(wt + kz)e,

”, —_— —_ —_ E End
Résultant | B=B,+ B, =2 ?Ocos(wt) cos(kz)e,

Champ électrique

Incident E, = + Eycos(wt — kz)e,
Réfléchi E, = — Eycos(wt + kz)ey,

—

Résultant E = E + E: = 2Eysin(wt) sin(kz)e,

Commentaires sur 'expression des champs résultants (Rappels ChEM5) :

* Les dépendances spatiale (en z) et temporelle (en t) n"apparaissent pas au sein de la méme fonction

cos/sin : on parle de SEPARATION DES VARIABLES spatio-temporelles (z et t) et d’onde STATIONNAIRE.

¢ On peut aussi écrire les champs sous la forme :
B = E) +B, = Btot(2) - cos(wt)e, E = E +E = Eio:(2) - cos (wt - %)a
Avec By (z) = 2 %cos(kz) Avec E;,;(z) = 2E,sin(kz)
Ainsi, en un point M fixé, i.e. en z fixé, les champs sont des fonctions sinusoidales de t de pulsation w et
d’amplitudes respectives |2 %cos(kz)| et |2 Eysin(kz)| qui dépendent donc du point considéré.

Les champs vibrent sur place : il n’y a plus de propagation ni vers la droite, ni vers la gauche.

Contrairement au cas de I'onde progressive ou ils sont en phase, les champs électrique et magnétique
. . . *

vibrent en quadrature de phase pour I'onde stationnaire .

L’amplitude du champ électrique |2 Eysin(kz)| s’annule périodiquement pour des valeurs de z distantes

de % = % : ce sont les NCEUDS DE VIBRATION.
Entre deux nceuds du champ électrique se situe un maximum d’amplitude = VENTRE DE VIBRATION.

Rq : On peut mener le méme raisonnement sur I’'amplitude du champ magnétique.

neeud de E ventre de E

......................................................

i Noeuds et ventres de vibration |
| sont caractéristiques d’une onde |
| stationnaire.

* . . . .
Comparatif des ondes progressives et stationnaires : cf annexe.
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5) Solution de I’équation de d’Alembert en ondes stationnaires — Séparation des variables

On note ici s(z, t) la vibration scalaire associée a I'onde (s(z,t) = E,(z,t) ou By (z,t)).
L’étude de la réflexion d’'une onde EM sur un conducteur parfait a montré que I'onde dans le vide est
stationnaire. On introduit ici une méthode permettant de déterminer efficacement son expression a partir
de I'équation de d’Alembert vérifiée dans le vide.
La vibration associée a une onde stationnaire est de la forme : s(z,t) = F(t) - K(2)
— découplage des variables spatio-temporelles.
Déterminons I'expression de F(t) et K(z) telles que s(z, t) soit solution de I'équation de d’Alembert :
d*s 1 9%s
9z c? at? (E0)

@ Equivalence de I’équation de d’Alembert par injection de la solution :

J d’K d’F
) a7 _ 1 ar
"5* VF#0etVK#0: (E0) =15 =50 ED

@ Découplage : les variables respectives z et t des fonctions F(t) et K(z) étant

Méthode de indépendantes, on a:
SEPARATION 2K oF
DES (E1) & —= = aK(z) et il aF(t)
VARIABLES avec oL une constante

® Solutions des EDLen z et en t : la forme des solutions dépend du signe de a.
Seul le cas a < 0 est physiquement acceptable pour une onde stationnaire®, on a*:

F(t) = Focos(CMt + ¢;) et K(z) = Kycos (MZ + <pz)

@ Expressions usuelles : on pose k = +/|a| et w = kc, il vient® :
s(z,t) = Fy - Ky - cos(wt + ;) - cos(kz + ¢,)

Cf ex 8 TDEM5

Tcfex 8 TDEMS : le cas a = 0 est d rejeter : en effet, il correspond soit & une solution F(t) divergente, soit d
une solution F(t) transitoire.

% solutions d’EDL du type oscillateur harmonique.

3 cohérent avec § C.4 ; il faut ensuite tenir compte d’éventuelles conditions aux limites, cf § C.6.

6) Applications aux cavités a une dimension — Mode d'onde stationnaire

Dans un milieu continu illimité, la longueur d’onde A (et donc k) et la fréquence f (et donc w) des ondes
solutions de I’équation d’onde peuvent prendre n‘importe quelle valeur.

A l'inverse, si une onde se propage dans un milieu limité spatialement et que des conditions aux limites
du milieu sont imposées alors k et w sont quantifiés, on les note k,, et w,, qui dépendent des dimensions
du milieu. La solution de I'équation d’onde associée aux valeurs k,, et w,, est appelée mode propre n.

a) Modes propres pour la corde vibrante

Les vibrations d’une corde fixée a ses deux extrémités (Vt, y(z = —a,t) = 0 =y(z = 0,t)) sont des
modes d’onde stationnaire.
Ex : cordes d’instruments (guitare, violon ou piano).

2T
E;wn=kncetfn=

Résultats obtenus : k,, = %" avecn € N*et on en déduit: 4,, = %
— Visualisation expérimentale des modes propres avec la corde de Melde, cf TP10E.

Rq : Démarche similaire pour I’étude des tuyaux sonores.
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b) Modes d’onde électromagnétique — « cavité »

* Une cavité électromagnétique est un volume vide délimité par des parois conductrices.

Considérons une cavité a une dimension, formée de deux plans parfaitement conducteurs paralléles,
distants de a le long du méme axe (Oz). On recherche les ondes pouvant exister dans cette cavité.

conducteur conducteur
parfait vide parfait
AVAVAVAVSS
—a ‘ 0
‘ > Z
LYAVAVAVAV, ‘

Rq : Un LASER comporte une cavité similaire.

Dans la cavité, I'onde va subir des réflexions successives au niveau des dioptres vide/conducteur ainsi cette
onde est stationnaire, avec un nceud de vibration au niveau de chaque paroi d’aprés les relations de
passage.

On recherche le champ électrigue dans la cavité sous la forme d’une onde stationnaire polarisée
rectilignement : E(z,t) = F(t) - K(2) - &.

Cette onde doit vérifier :

, . , . = 9%E
- I’équation de d’Alembert dans le vide : AE = clza_tf

- les conditions aux limites imposées par les relations de passageenz =0et —a:
Vt,E(z=07,t)=0 et E(z=—-a"t)=0

Les deux plans conducteurs paralleles forment une cavité résonante de dimension a entrainant
I'apparition de modes d’ondes stationnaires. Le mode n a :

pour longueur d’'onde : 4,, = 2:“ et pour fréquence f, = :—Z,n € N*
Ainsi, les ondes pouvant exister dans la cavité sont celles pour lesquelles la longueur de la cavité
correspond a un nombre entier de demi-longueurs d’onde.
Toute onde pouvant exister dans la cavité s’écrit comme une superposition des modes propres.
Mathématiquement, pour une onde polarisée rectilignement selon e, :

E(zt) = i Eyy, cos (?t + (pn) - sin (%Tz) ey

n=1
L’amplitude Ey, et la phase ¢,, du mode d’ordre n sont fixées par les conditions initiales.

Rq : Mémes résultats que pour la corde vibrante fixée en ses 2 extrémités car mémes équation d’onde et CL.

| D Exercice classique : Etablir I'expression de E(z, t) et en déduire les résultats de quantification de A et f.
| i) Appliquer la méthode de séparation des variables (donnée p.12).

{ ii) Exploiter les conditions aux limites pour en déduire les valeurs possibles du vecteur d’onde.

| iii) Conclure en exploitant la relation entre k et A et entre 1 et f.
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On retrouve ces résultats a I'aide de quelques schémas :

® Noeuds de vibration imposés en z = - a et z = 0 par les parois conductrices ;
@ Mode fondamental (n = 1) mode avec nombre de nceuds minimali.e. 2 ;
’ h* ® Un nceud supplémentaire en passant du mode n aumoden + 1 ;

Méthode

@ Longueur d’onde du mode n déduite de a et de la distance entre deux nceuds

. g A
consécutifs :7" ;

GDI:';Z;ZZZZZZ ® Détermination 4,, pour n = 1, 2 et 3 puis généralisation pour n quelconque.
des A, des . z=0N
modes propres %z - §
avec des §/ /T\/T\ﬂ\%_,
schémas ! | | ‘

Mode n=1 Mode n=2 Mode n=3

¢ Retour sur le cas du micro-ondes — Aspects énergétiques :
Le chauffage par micro-ondes se fait par conversion d’énergie électromagnétique en énergie thermique : le

champ E variable agit sur les molécules d’eau polaires des aliments qui, pour suivre les oscillations du
champ, se mettent en rotation et dissipent I'énergie que le champ a rayonné.

A partir des expressions des champs EetB (cf§C.4),ona:
I = ceyEy2sin(Rut) sin(2kz) e,

R
Ainsi aux nceuds de I1, le transfert d’énergie du champ a I'aliment est nul et au contraire il est maximal aux

R
ventres de I1. Pour obtenir une température plus homogene de I'aliment, on utilise un plateau tournant.

Rq : En mécanique quantique, on verra une autre situation ot apparaissent des modes propres :

Onde de matiere :

Cas de la particule quantique libre confinée dans un puits de potentiel infini a une dimension.

On considere une particule quantique qui ne peut se déplacer que le long de I'axe (Oz) entre z =-a et z=0 et
qui, en ses positions accessibles, n’est soumise a aucune interaction (énergie potentielle : V(-a <z<0)=0:
particule « libre »).

Par ailleurs, on a des parois « infranchissables » en z =-a et z=0 (V(z = -a ou 0) — o) : la particule est
donc confinée entre z=-a et z = 0.

— On traite cet exemple par analogie avec la corde vibrante fixée en ses 2 extrémités.

On en déduit que I’énergie de la particule est quantifiée (avec E = %mv2 et la relation de De Broglie).
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Annexe : Ondes progressives et ondes stationnaires

Onde plane . . .
. Progressive Stationnaire
monochromatique
Expression
P . cos(wt — kx) cos(wt) - cos(kx)
proportionnelle a ...
Relation de dispersion
. w =kc
dans le vide
A KD N e
\\ \ . e I.-" ,\ ~ \ - l.u/ Pl \ ”/ -
———— S o N
\ Ny . VAV \ // N \ e A X
Chronophotographie N/ VLT N S N
—t=0 ---t=T/3 —t=0 ---1t=T/3
—t=T/6 ---t=T/2 —t=T/6 ---t=T/2

Double périodicité

Propagation

Déformation

La longueur d’onde et la période T vérifient : A = cT
Pas de progression mais vibration
« sur place »
Certains points ne vibrent pas
(nceuds) alors que d’autres subissent
des vibrations maximales (ventres).

Progression de I'onde a la célérité c

Tous les points sont soumis, au cours
du temps, aux mémes perturbations.
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