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ELECTROMAGNETISME 

Chapitre EM7. Ondes électromagnétiques dans un milieu ohmique 

 

Les micro-ondes sont situées 
entre l'infrarouge et les ondes 
de radio dans le spectre 
électromagnétique. Elles ont 
des fréquences entre 1 et 300 
GHz. 
← Schéma de principe d’un four 
à micro-ondes.  
Principe de fonctionnement en 
lien avec une cavité vide 
délimitée par des parois 
conductrices, cf § C.6. 

 
INTRO : 

Dans ce chapitre, on étudie la propagation des ondes électromagnétiques dans un milieu ohmique, par exemple 
dans un conducteur métallique, ainsi que leur réflexion sur un conducteur parfait. 
On établira les différences avec la propagation dans le vide : équation de diffusion, atténuation : « effet de peau ». 
Lors de l’étude de la réflexion d’une onde EM sur un dioptre vide / conducteur parfait, on reviendra sur la notion d’ondes 
stationnaires et de modes propres. 
 
Buts de ce chapitre : établir l’équation d’évolution d’une onde électromagnétique (EM) dans un milieu ohmique ; étudier 
la réflexion d’une onde EM sur un conducteur parfait et l’onde EM régnant dans une cavité à une dimension. 
 
Prérequis : 
1e année : Superposition d’ondes ; Régime Sinusoïdal Forcé ; Mécanique du point. 
2e année : EM4 Electromagnétisme en régime variable ; EM5-6 Ondes EM dans le vide et dans un plasma ; T2/4 
Transferts thermiques. 
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A) Approximations usuelles dans un milieu ohmique 

1) Loi d’Ohm locale 

a) Modélisation d’un conducteur métallique : Modèle de Drude 
On considère un métal constitué d’ions positifs fixes et d’électrons de conduction, de charge −e et de 
masse 𝑚𝑒, libres de se déplacer dans le métal (cf MPSI solide cristallin métallique). On note 𝒏∗ (USI : m-3) la 
densité volumique d’électrons : 𝑛∗ ≈ 1028 𝑚−3.  
Contrairement au plasma, le métal est un milieu dense, on doit donc tenir compte des collisions entre les 
électrons et les cations du réseau.  

On modélise les collisions par une force de type frottement fluide 𝒇⃗ = −𝒎𝒆
𝒗⃗⃗ 

𝝉𝒄
, où 𝑣  est la vitesse d’un 

électron et 𝜏𝑐 est un paramètre phénoménologique appelé temps de collision ou de relaxation : 
𝜏𝑐 ≈ 10

−14𝑠. 
 
b) Expression du champ électromagnétique 
Considérons la propagation dans le conducteur métallique d’une pseudo(1)-onde PPM électromagnétique.  

Son champ électrique s’écrit en notation complexe :  

𝑬⃗⃗ (𝑴, 𝒕) = 𝑬𝟎⃗⃗ ⃗⃗  𝒆
𝒊(𝝎𝒕−𝒌⃗⃗ ∙𝒓⃗ ) 

Avec    𝜔 la pulsation de l’émetteur de l’onde ; 𝑟 = 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗   le vecteur position ;  

𝒌⃗⃗  le vecteur d’onde ; dans le métal, le nombre d’onde angulaire 𝑘 peut être complexe(1) : 
𝒌 = 𝒌′ − 𝒊𝒌′′ qu’on cherche à déterminer au § B.2 ; 

De même, on écrit : 

𝑩⃗⃗ (𝑴, 𝒕) = 𝑩𝟎⃗⃗⃗⃗  ⃗𝒆
𝒊(𝝎𝒕−𝒌⃗⃗ ∙𝒓⃗ ) 

Rappel du ChEM5 : Avec cette représentation complexe, le vecteur symbolique nabla s’écrit : 𝛁⃗⃗ = −𝒊𝒌⃗⃗  

 
c) Mouvement des électrons de conduction – Loi d’Ohm locale 
Sous l’action du champ électromagnétique, les électrons de conduction vont se mettre en mouvement.  
Ils sont supposés être non relativistes i.e. que leur vitesse est très inférieure à 𝑐, célérité de la lumière dans 
le vide ainsi, comme dans le cas du plasma, on peut négliger le terme magnétique de la force de Lorentz 
devant le terme électrique. 
On cherche à exprimer le vecteur densité de courant associé au mouvement des électrons de conduction. 

Un milieu ohmique vérifie la loi d’ohm locale(2) : 

𝒋 = 𝜸𝑬⃗⃗  
où 𝜸 (parfois noté 𝛔) est la conductivité électrique (USI : Ω−1. 𝑚−1 = 𝑆.𝑚−1) : 𝛾 ∈ ℝ+. 
ODG ∶ γ ≈ 6.107Ω−1. 𝑚−1 pour le cuivre. 

La loi d’Ohm traduit la mise en place d’un courant de conduction (déplacement d’e-) sous l’action de 𝐸⃗ . 
(2) La loi d’ohm est vérifiée tant que les fréquences ne sont pas trop grandes : 𝒇 ≪ 𝟏𝟎𝟏𝟑 𝑯𝒛 ≈

𝟏

𝟐𝝅𝝉𝒄
. 

 Exercice classique :  

i) Sachant que pour un électron non relativiste 
𝑑𝑣⃗ 

𝑑𝑡
≈

𝜕𝑣⃗ 

𝜕𝑡
, montrer que le vecteur vitesse 𝑣  d’un électron situé 

en 𝑀 vérifie l’équation : 
𝝏𝒗⃗⃗ 

𝝏𝒕
+

𝒗⃗⃗ 

𝝉𝒄
=

−𝒆

𝒎𝒆
∙ 𝑬⃗⃗ (𝑴, 𝒕). 

 Sous l’effet du champ, l’électron a un mouvement d’oscillation de même pulsation 𝜔 que le champ. 
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ii) Exprimer le vecteur densité de courant 𝑗  dû au mouvement des électrons en fonction de 𝑒, 𝑣  et 𝑛∗. 
iii) En RSF, on introduit les notations complexes de 𝑣  et 𝑗 . Exprimer 𝑣  avec l’équation du mouvement 

transposée en notations complexes puis en déduire que la conductivité électrique complexe du métal 

s’écrit : 𝛾 =
𝑛∗𝑒²𝜏𝑐

𝑚𝑒(1+𝑖𝜏𝑐𝜔)
. 

iv) Pour 𝜔 « assez faible », simplifier cette expression pour retrouver la loi d’Ohm locale avec 𝛾 ∈ ℝ+. 
Rq : Pour 𝑓 ≫ 1013 𝐻𝑧, 𝛾 → 0 : les e- ne parviennent pas à suivre les variations trop rapides du champ. 

 
Conséquence : Le champ fournit toujours de la puissance au milieu ohmique :  

𝑷𝑽 = 𝑗 ⃗⃗ . 𝐸⃗ = 𝜸 𝑬
𝟐 =

𝒋𝟐

𝜸
> 𝟎 

C’est l’effet Joule. Un milieu ohmique est un milieu absorbant.  

 
 

2) Neutralité électrique locale 

Un milieu ohmique est globalement neutre (dans le cas du cuivre, chaque atome Cu(s) libère un électron et 
devient un cation Cu+). Il est également localement neutre à tout instant : 𝝆(𝑴, 𝒕) ≈ 𝟎. 

 Exercice classique : Démontrer la neutralité électrique locale du milieu ohmique.  
On se place en un point M quelconque et on note ρ0 la valeur initiale de 𝜌(𝑀, 𝑡). 
i) Etablir l’équation différentielle vérifiée par 𝜌(𝑀, 𝑡) en utilisant l’équation locale de conservation de la 
charge, la loi d’Ohm locale et l’équation de Maxwell-Gauss.  
ii) Introduire un temps caractéristique τ de variation de 𝜌(𝑀, 𝑡) et donner son ODG pour conclure. 
 
 

3) Courants de conduction et de déplacement – Régime lentement variable 

Dans le cas général, l’équation de Maxwell-Ampère s’écrit : 

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝐵⃗ = 𝜇0𝑗 ⃗⃗ + 𝜇0𝜀0
𝜕𝐸⃗ 

𝜕𝑡
 

Avec 𝒋𝑫⃗⃗⃗⃗ = 𝜺𝟎
𝝏𝑬⃗⃗ 

𝝏𝒕
 la densité du courant de déplacement et dans un milieu ohmique, 𝒋 ⃗⃗ = 𝜸𝑬⃗⃗  : la densité du 

courant de conduction. 

Dans un milieu ohmique, en régime lentement variable(*), ‖𝒋𝑫⃗⃗⃗⃗ ‖ ≪ ‖𝒋 ⃗⃗ ‖. 
(*) pour 𝑓 ≪ 1017 𝐻𝑧 ≈

1

𝟐𝝅𝜏
 (condition vérifiée dans le cadre de la validité de la loi d’Ohm : 𝑓 ≪ 1013 𝐻𝑧).  

 Exercice classique : Démontrer ce résultat.  
 

Conséquence : Dans un milieu ohmique en régime lentement variable, le théorème d’Ampère s’énonce 
comme en magnétostatique. 
 
 

4) Bilan : Equations de Maxwell dans un milieu ohmique en régime lentement variable 

D’après les § précédents, 𝜌 ≈ 0 ; 𝑗 = 𝛾𝐸⃗ ; ‖𝑗𝐷⃗⃗  ⃗‖ ≪ ‖𝑗 ⃗⃗ ‖ d’où la simplification des équations de Maxwell : 

Maxwell-Gauss 𝑑𝑖𝑣 𝐸⃗ (𝑀, 𝑡) =                                        

Maxwell-flux ou -Thomson 𝑑𝑖𝑣 𝐵⃗ (𝑀, 𝑡) =                                         

Maxwell-Faraday 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝐸⃗ (𝑀, 𝑡) =                      

Maxwell-Ampère 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝐵⃗ (𝑀, 𝑡) =                  
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B) Onde électromagnétique dans un milieu ohmique en régime 
lentement variable – Effet de peau 

1) Equation de diffusion dans un milieu ohmique 

Dans un milieu ohmique en régime lentement variable, le champ électrique vérifie l’équation : 

∆𝑬⃗⃗ = 𝝁𝟎𝜸
𝝏𝑬⃗⃗ 

𝝏𝒕
 

 Exercice classique : Démontrer cette équation en utilisant la méthode décrite au ChEM5 p.2. 

Par un raisonnement analogue, on obtient : ∆𝑩⃗⃗ = 𝝁𝟎𝜸
𝝏𝑩⃗⃗ 

𝝏𝒕
 

Et avec la loi d’Ohm locale, on obtient :  ∆𝒋 = 𝝁𝟎𝜸
𝝏𝒋 

𝝏𝒕
 

 
Analyse de l’équation : analogie avec la conduction thermique et comparaison à l’équation de d’Alembert : 

Onde EM dans le vide Onde EM dans un milieu ohmique « Onde thermique » 

∆𝑬⃗⃗ =
𝟏

𝒄𝟐
𝝏𝟐𝑬⃗⃗ 

𝝏𝒕𝟐
 

Equation de d’Alembert 
 

∆𝑬⃗⃗ = 𝝁𝟎𝜸
𝝏𝑬⃗⃗ 

𝝏𝒕
 

On peut poser 𝐷 =
1

𝜇0𝛾
 

 

∆𝑻 =
𝟏

𝑫
.
𝝏𝑻

𝝏𝒕
 

Avec 𝐷 =  
𝜆

𝜌𝑐
  

Equation de la chaleur sans 
source, cf ChT2/4 

Equations aux dérivées partielles linéaires et à coefficients constants 

Terme en dérivée 2nde temporelle 
→ Phénomène invariant par 

renversement du temps 

Terme en dérivée 1e temporelle 
→ Phénomène irréversible 

Equation de propagation Equation de diffusion 

 
 
 
 

2) Solution de l’équation – Epaisseur de peau 

Position du problème : 
On suppose qu’un milieu ohmique occupe le demi-espace 𝑧 > 0. 

On suppose que le champ électrique est polarisé rectilignement selon 𝑒𝑥⃗⃗  ⃗ : 𝑬⃗⃗ = 𝑬(𝒛, 𝒕)𝒆𝒙⃗⃗⃗⃗  et qu’il se propage 

selon + 𝑒𝑧⃗⃗  ⃗ : 𝒌⃗⃗ = 𝒌 𝒆𝒛⃗⃗⃗⃗ . 

Rq : Les champs 𝐸⃗  et 𝐵⃗  sont transverses d’après les équations de Maxwell-Gauss et Maxwell-flux. 

La notation complexe du champ électrique est donc :  

𝑬⃗⃗ (𝒛, 𝒕) = 𝑬𝟎𝒆
𝒊(𝝎𝒕−𝒌𝒛+𝝋𝟎)𝒆𝒙⃗⃗⃗⃗  

Rappel : Dans le milieu ohmique, 𝑘 est, a priori, complexe (pseudo-OPPM). 
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Dans un milieu ohmique, la relation de dispersion est : 

𝒌𝟐 = −𝒊𝝎𝝁𝟎𝜸 

On pose  𝜹 = √
𝟐

𝝁𝟎𝜸𝛚
  grandeur homogène à une longueur. 

𝑘 est donc complexe et vérifie : 𝑘 = 𝑘′ − 𝑖𝑘′′ = ±(
1

𝛿
+

−𝑖

𝛿
)  (racine carrée complexe). 

 Démonstration à connaître : établir cette relation (cf méthode ChEM5) ; en déduire les expressions du 
champ électrique complexe puis du champ électrique réel. 

NB : La relation de dispersion s’obtient aussi pour le cas plus général où 𝐸⃗ (𝑀, 𝑡) = 𝐸0⃗⃗⃗⃗ 𝑒
𝑖(𝜔𝑡−𝑘⃗ ∙𝑟 ) ; 

𝐵⃗ (𝑀, 𝑡) = 𝐵0⃗⃗⃗⃗ 𝑒
𝑖(𝜔𝑡−𝑘⃗ ∙𝑟 ) (cf p.2) et ∇⃗⃗ → −𝑖𝑘⃗  ;  

𝜕

𝜕𝑡
→ +𝑖𝜔. 

 
Analyse du champ électrique réel : 

𝑬⃗⃗ = 𝑬𝟎𝒆
(−
𝒛
𝜹
)
𝒄𝒐𝒔 (𝝎𝒕 −

𝒛

𝜹
+ 𝝋𝟎) 𝒆𝒙⃗⃗⃗⃗  

 Le facteur 𝒄𝒐𝒔 (𝝎𝒕 −
𝒛

𝜹
+𝝋𝟎) correspond au phénomène de 

propagation selon + 𝑢𝑧⃗⃗⃗⃗ , identique au modèle de l’OPPM. Il fait 
intervenir la partie réelle 𝑘′ du vecteur d’onde. 

 Le facteur 𝒆
(−

𝒛

𝜹
)
 correspond au phénomène d’ATTENUATION de 

l’onde, suivant + 𝑢𝑧⃗⃗⃗⃗ , dans le milieu ohmique. Il fait intervenir la partie 
imaginaire 𝑘′′ du vecteur d’onde (*). L’atténuation est due à l’absorption 
d’énergie par le milieu ohmique : c’est l’effet Joule. 

 𝜹 = √
𝟐

𝝁𝟎𝜸𝛚
 est la longueur caractéristique d’atténuation de l’onde appelé EPAISSEUR DE PEAU. 

 
(*) Notion de pseudo-OPPM : l’onde est au sens strict plane (plans d’onde : z = cste) et monochromatique 
(dépendance temporelle sinusoïdale avec une unique pulsation 𝜔) mais elle n’est pas progressive car elle ne 

peut pas se mettre sous la forme : 𝐸⃗ (𝑧, 𝑡) = 𝑓 (𝑡 −
𝑧

𝑐
). 

Analyse graphique : 
L’amplitude de l’onde est quasi-nulle au-delà d’une distance ≈ 5𝛿. Une oscillation spatiale de l’onde 

s’étend sur une distance =
2𝜋

𝑘′
= 2𝜋𝛿 ≈ 6𝛿. Ainsi, une seule oscillation est visible. 

 
Rq : 

- On peut introduire la vitesse de phase de la pseudo-OPPM : 𝑣𝜑 =
𝜔

𝑘′
= √

2𝜔

𝜇0𝛾
 

Elle dépend de 𝜔 ainsi un milieu ohmique est dispersif. 
- On obtient le champ magnétique avec l’équation de Maxwell-Faraday et la densité de courant avec 

la loi d’Ohm. 
- Rappel : Dans un plasma occupant le demi-espace 𝑧 > 0, pour 𝜔 < 𝜔𝑝, 𝑘 est un imaginaire pur . 

Pour un champ électrique polarisé rectilignement selon 𝑒𝑥⃗⃗  ⃗, on a une onde évanescente :  

𝐸⃗ (𝑧, 𝑡) = 𝐸0𝑒
−𝑧 𝛿⁄ 𝑐𝑜𝑠(𝜔𝑡 + 𝜑0)𝑒𝑥⃗⃗  ⃗ à distinguer d’une onde qui se propage dans un milieu absorbant 

tel qu’un milieu ohmique. 
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3) Effet de peau 

 Influence de la fréquence pour un conducteur en cuivre : 

Fréquence 50 Hz (secteur) 1 MHz (radio) 10 GHz (µondes) 1 THz (IR) 

δ 9 mm 60 µm 0,6 µm 65 nm 
 

Lorsqu’une onde électromagnétique, de fréquence élevée, est envoyée sur un conducteur, cette onde et 

le courant sont non nuls uniquement au voisinage de la surface dans une couche d’épaisseur  𝜹 = √
𝟐

𝝁𝟎𝜸𝛚
 . 

On parle d’EFFET DE PEAU étant donné le caractère superficiel de la répartition des champs EM et des 
courants dans le conducteur.  
On introduit alors (§ C.3) une densité de courant surfacique. 

 
Conséquences – Cas d’un conducteur cylindrique :  
On admet que les résultats établis en géométrie cartésienne se généralisent 
à un conducteur  cylindrique de rayon 𝑎 d’axe (𝑂𝑧) parcouru par un courant 
sinusoïdal 𝑗 = 𝑗(𝑟, 𝑡)𝑒𝑧⃗⃗  ⃗ : 

𝐸⃗ (𝑟, 𝑡) = 𝐸0𝑒
𝑖(𝜔𝑡−𝑘(𝑎−𝑟)+𝜑0)𝑒𝑧⃗⃗  ⃗ 

Evolution de δ lorsque la fréquence augmente :  
 
 
 
 

A la fréquence du secteur EDF, pour les fils domestiques de sections normalisées à 1,5 mm² pour 
l’éclairage, à 2,5 mm² pour les prises de courant et 4 mm² pour les fours ou plaques électriques, soit des 
rayons respectifs de 0,7 mm ; 0,9 mm et 1,1 mm, l’effet de peau n’a pas d’incidence (δ = 9 mm). 
 
Aux fréquences plus élevées, l'effet de peau entraîne une augmentation de la résistance du conducteur 
puisque sa section utile diminue. 
Aux fréquences des ondes radio, seule une peau de 60 μm « travaille ». On peut alors utiliser un fil 
constitué de multiples brins (diam. 0,05 mm environ) tressés ensemble, cf figure 1. 
Par ailleurs, pour le transport d’énergie à haute fréquence, on peut utiliser des guides d’ondes : le signal 
est guidé entre deux cylindres métalliques séparés par un diélectrique (câble coaxial, cf figure 2). 
 

Figure 1 Figure 2 

 

A            B             C             D 

 

Câble électrique à fils de Litz : il est constitué de plusieurs 
fils isolés électriquement les uns des autres. L’ensemble des 
fils est gainé pour former un seul câble. 

A : Gaine extérieure en plastique 
B : Blindage en cuivre 
C : Isolant 
D : Conducteur central (âme) en cuivre 

 

 Influence du milieu : 

L’épaisseur de peau 𝛿 dépend aussi de 𝛾 la conductivité du milieu. Le phénomène d’effet de peau est 
d’autant plus marqué que le milieu est bon conducteur, cf « limite du conducteur parfait » au § C.1. 

Rq : L’eau de mer a une conductivité 𝛾 ≈ 1 𝑆.𝑚−1, 𝛿 ≈
500

√𝑓
 en m avec 𝑓 en Hz. Pour communiquer, les sous-

marins doivent utiliser des ondes radio de très basse fréquence : entre 3 et 30 kHz. 

 

2𝑎 

http://fr.wikipedia.org/wiki/Cuivre
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C) Réflexion d'une OPPM sur un conducteur parfait 
Position du problème – Expression de l’onde incidente 
Considérons un conducteur occupant tout le demi-espace 𝒛 > 𝟎, le demi-espace 𝒛 < 𝟎 étant occupé par 
un milieu vide de charge et de courant (par ex, de l’air). 
Soit une onde incidente PPM polarisée rectilignement selon 
(𝑂𝑥) se propageant dans le vide et qui frappe le dioptre 𝑧 = 0 
en incidence normale : 

𝑬𝒊⃗⃗⃗⃗ = 𝑬𝟎𝒄𝒐𝒔(𝝎𝒕 − 𝒌𝒛)𝒆𝒙⃗⃗⃗⃗ ⟺ 𝑬𝒊⃗⃗⃗⃗ = 𝑬𝟎𝒆
𝒊(𝝎𝒕−𝒌𝒛)𝒆𝒙⃗⃗⃗⃗  

On note 𝑘𝑖⃗⃗  ⃗ son vecteur d’onde : 𝒌𝒊⃗⃗  ⃗ = 𝒌𝒆𝒛⃗⃗⃗⃗ =
𝝎

𝒄
𝒆𝒛⃗⃗⃗⃗  (d’après la relation de dispersion dans le vide). 

But : Déterminer ce qu’il advient lorsque cette onde atteint le conducteur. 

 
 

1) Conducteur parfait 

DEFINITION : 
CONDUCTEUR PARFAIT = Conducteur dont la résistivité est nulle. Autrement dit : 𝛄 (conductivité) → ∞. 

Or, la puissance volumique dissipée par effet Joule dans un conducteur est : 

𝑃𝑉 = 𝑗 ⃗⃗ . 𝐸⃗ = 𝛾 𝐸
2 

Pour un conducteur parfait, il faut que 𝐸2 → 0 pour que cette puissance volumique reste finie. 

⟹ au sein d'un conducteur parfait, 𝑬⃗⃗ = 𝟎⃗⃗  

On déduit de l’équation de Maxwell-Faraday que 
𝜕𝐵⃗ 

𝜕𝑡
= −𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝐸⃗ = 0⃗  ⟺ seul un champ 𝐵⃗  statique peut 

exister dans un conducteur parfait. En se limitant aux champs variables temporellement, 

⟹ au sein d'un conducteur parfait, 𝑩⃗⃗ = 𝟎⃗⃗  

On déduit de l’équation de Maxwell-Ampère que 𝜇0𝑗 ⃗⃗ = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗  𝐵⃗ − 𝜇0𝜀0
𝜕𝐸⃗ 

𝜕𝑡
= 0⃗ .  

⟹ au sein d'un conducteur parfait, 𝒋 = 𝟎⃗⃗  

On déduit de l’équation de Maxwell-Gauss que 
𝜌

𝜀0
= 𝑑𝑖𝑣 𝐸⃗ = 0. 

⟹ au sein d'un conducteur parfait, 𝝆 = 𝟎 

BILAN : En régime variable, au sein d’un conducteur parfait, 

- les champs 𝑬⃗⃗  et 𝑩⃗⃗  sont nuls 
- la densité volumique de charges 𝝆 et le vecteur densité de courant volumique 𝒋  sont nuls 
Les charges et les courants ne peuvent être que surfaciques, cf § C.3.d. 

 
NB : Autre raisonnement possible : 

D’après l’étude du § B, l’épaisseur de peau s’écrit 𝛿 = √
2

𝜇0𝛾ω
. 

Dans le cas d’un conducteur parfait en régime variable (ω ≠ 0), γ → ∞⟹ 𝜹 → 𝟎. Ce qui conduit à des 

champs 𝐸⃗  et 𝐵⃗  nuls au sein du conducteur parfait. Puis à 𝜌 = 0 et 𝑗 = 0⃗  via les équations de Maxwell. 

On peut assimiler un conducteur à un conducteur parfait si 𝛿 ≪ 𝜆 =
2𝜋𝑐

𝜔
 la longueur d’onde dans le vide et 

si 𝛿 négligeable vis-à-vis des dimensions géométriques du conducteur. 
Cf Animation www.f-legrand.fr/scidoc/simul/ondes/reflexionConducteur.html permettant de visualiser l’onde EM à 
l’interface entre le vide et un conducteur (ondes incidente et réfléchie en bleu ; onde totale en rouge ; 
abscisses graduées en termes de longueur d’onde dans le vide).  
On a la limite du conducteur parfait pour 𝛿/𝜆 → 0.  
𝑅 = coefficient de réflexion en énergie. 

𝑧 

http://www.f-legrand.fr/scidoc/simul/ondes/reflexionConducteur.html
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2) Conditions aux limites à l’interface – Relations de passage 

Considérons une interface entre deux milieux  et , de normale 𝑛⃗ 1⟶2.  
Lorsque des charges ou des courants sont fortement localisés au voisinage de cette interface (répartition 

surfacique), on peut avoir discontinuité des champs 𝐸⃗  et 𝐵⃗  (cf ChEM1-2). Les conditions aux limites sont 
données par les relations de passage, admises et qui seront fournies par l’énoncé. 
De part et d’autre d’un point 𝑀0 se trouvant sur l’interface, 

∀𝑡, {
𝐸2⃗⃗⃗⃗ (𝑀0

+, 𝑡) − 𝐸1⃗⃗⃗⃗ (𝑀0
−, 𝑡) =

𝜎(𝑀0, 𝑡)

𝜀0
𝑛⃗ 1⟶2

𝐵2⃗⃗⃗⃗ (𝑀0
+, 𝑡) − 𝐵1⃗⃗⃗⃗ (𝑀0

−, 𝑡) = 𝜇0𝑗𝑆 ⃗⃗⃗⃗ (𝑀0, 𝑡) ∧ 𝑛⃗ 1⟶2

 

Avec 𝜎 la densité surfacique de charges et 𝑗𝑆 ⃗⃗⃗⃗  le vecteur densité de 

courant surfacique à l’interface, et 𝐸1/2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  et 𝐵1/2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   les champs dans les 

milieux /. 
→ s’il y a discontinuité de champ électrique à l’interface, alors elle ne peut concerner que la 
composante normale à la surface ;  
→ s’il y a discontinuité de champ magnétique, alors elle ne peut concerner que les composantes 
tangentielles à la surface. 

Les deux composantes tangentielles du champ électrique et la composante normale du champ 
magnétique sont toujours continues à l’interface entre deux milieux.  
Les autres composantes peuvent être discontinues. 

 

3) Onde réfléchie sur un conducteur parfait  

a) Continuité du champ électrique tangentiel – Nécessité d’une onde réfléchie 
Dans le cas du dioptre étudié vide/conducteur parfait, les relations de passages donnent : 

∀𝑡, ∀(𝑥, 𝑦)  {
𝐸𝑐𝑜𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑧 = 0+, 𝑡) − 𝐸𝑣𝑖𝑑𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑧 = 0−, 𝑡) =

𝜎(𝑥, 𝑦, 𝑡)

𝜀0
𝑒 𝑧

𝐵𝑐𝑜𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑧 = 0+, 𝑡) − 𝐵𝑣𝑖𝑑𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑧 = 0−, 𝑡) = 𝜇0𝑗𝑆 ⃗⃗⃗⃗ (𝑥, 𝑦, 𝑡) ∧ 𝑒 𝑧

 

Avec 𝐸𝑐𝑜𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑥, 𝑦, 𝑧 = 0+, 𝑡) = 0⃗  pour un conducteur parfait. 

⟹∀𝑡, ∀(𝑥, 𝑦) ,    − 𝐸𝑣𝑖𝑑𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑥, 𝑦, 𝑧 = 0−, 𝑡) =
𝜎(𝑥, 𝑦)

𝜀0
𝑒 𝑧 

Raisonnons par l’absurde :  
Hypothèse (𝑯) : on suppose qu’il n’y a pas d’onde réfléchie. 

⟹ 𝐸𝑣𝑖𝑑𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑀, 𝑡) = 𝐸𝑖⃗⃗  ⃗(𝑀, 𝑡) = 𝐸0𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)𝑒𝑥⃗⃗  ⃗ 
La relation de passage impose : 

∀𝑡, ∀(𝑥, 𝑦) ,    − 𝐸0𝑐𝑜𝑠(𝜔𝑡)𝑒𝑥⃗⃗  ⃗ =
𝜎(𝑥, 𝑦, 𝑡)

𝜀0
𝑒 𝑧 

 
⟹ en projetant selon (𝑂𝑥) ∶ ∀𝑡,    − 𝐸0𝑐𝑜𝑠(𝜔𝑡) = 0 

Seule solution possible : 𝐸0 = 0⟹ onde incidente nulle ⟹ l’hypothèse (𝑯) est donc fausse.  
 

Il faut donc qu’un champ électrique RÉFLÉCHI se superpose au champ électrique incident pour que la 
continuité du champ électrique tangentiel soit vérifiée en 𝑧 = 0. 

 

Rq : le phénomène de réflexion ne se limite pas aux ondes 
électromagnétiques → réflexion d’une onde se propageant le long d’une 
corde sur l’extrémité fixe B. 
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Dioptre  vide 
/  conducteur 

parfait 

Méthode pour 
obtenir les 

caractéristiques 
de l’onde 
réfléchie 

 D’après les informations du sujet, on donne la notation complexe des champs 

électriques dans le milieu  : incident 𝑬𝒊⃗⃗⃗⃗  et réfléchi 𝑬𝒓⃗⃗ ⃗⃗ . On a 𝐸1⃗⃗⃗⃗ =  𝐸𝑖⃗⃗  ⃗ + 𝐸𝑟⃗⃗⃗⃗ . 

NB : les champs 𝐸𝑖⃗⃗  ⃗ et 𝐸𝑟⃗⃗⃗⃗  sont transverses car OPP dans le vide. 

 Milieu  conducteur parfait ⟹ 𝑬𝟐⃗⃗ ⃗⃗  = 𝟎⃗⃗ . 

 Exploitation de la relation de passage sur l’interface (𝑆) : 

∀𝑡, ∀𝑀0 ∈ (𝑆),   𝐸2⃗⃗⃗⃗ (𝑀0
+, 𝑡) − 𝐸1⃗⃗⃗⃗ (𝑀0

−, 𝑡) =
𝜎(𝑀0)

𝜀0
𝑛⃗ 1⟶2 

⟹ ∀𝑡, ∀𝑀0 ∈ (𝑆),   composantes tangentielles du champ électrique continues 

 Par identification, on obtient amplitude, phase, polarisation et pulsation de 𝐸𝑟⃗⃗⃗⃗ . On 

obtient la norme du vecteur d’onde via la relation de dispersion dans le vide. 

 On déduit les champs magnétiques 𝐵𝑖⃗⃗  ⃗ et 𝐵𝑟⃗⃗⃗⃗  de la relation de structure dans le vide. 

 
b) Expression du champ électrique réfléchi (cours-TD) 

On note 𝑬𝒓⃗⃗ ⃗⃗  le champ électrique réfléchi et 𝑬⃗⃗ = 𝑬𝒊⃗⃗⃗⃗ + 𝑬𝒓⃗⃗ ⃗⃗  le 
champ électrique résultant dans le vide (𝑧 < 0). 

On cherche l’onde réfléchie qui se propage selon −𝒆𝒛⃗⃗⃗⃗  sous la 
forme d’une OPPM, d’où en notation complexe : 

𝑬𝒓⃗⃗ ⃗⃗ =  𝑬𝟎𝒓⃗⃗ ⃗⃗ ⃗⃗  . 𝒆𝒊(𝝎𝒓𝒕+𝒌𝒓𝐳)  

 Exercice classique : Avec la méthode ci-dessus, exprimer les caractéristiques du champ électrique 

réfléchi (𝐸0𝑟⃗⃗ ⃗⃗ ⃗⃗ , 𝜔𝑟 et 𝑘𝑟) en fonction de celles du champ électrique incident et des vecteurs de base. 

 

BILAN : 

𝐸𝑖⃗⃗  ⃗ = 𝐸0𝑒
𝑖(𝜔𝑡−𝑘𝑧)𝑒𝑥⃗⃗  ⃗    ⟺    𝑬𝒊⃗⃗⃗⃗ = 𝑬𝟎𝒄𝒐𝒔(𝝎𝒕 − 𝒌𝒛)𝒆𝒙⃗⃗⃗⃗  

𝐸𝑟⃗⃗⃗⃗ = −𝐸0𝑒
𝑖(𝜔𝑡+𝑘𝑧)𝑒𝑥⃗⃗  ⃗    ⟺      𝑬𝒓⃗⃗ ⃗⃗ = 𝑬𝟎𝒄𝒐𝒔(𝝎𝒕 + 𝒌𝒛 + 𝝅)𝒆𝒙⃗⃗⃗⃗  

Les champs électriques incident et réfléchi : 
- ont la même amplitude: réflexion sans perte d’énergie ; 
- ont la même pulsation: RSF ; 

- se propagent selon la même direction (loi de Descartes !) mais dans des sens opposés :  𝑘𝑟⃗⃗⃗⃗ = −𝑘𝑖⃗⃗  ⃗ = −
𝜔

𝑐
𝑒𝑧⃗⃗  ⃗ ; 

- ont la même direction de polarisation (𝑒𝑥⃗⃗  ⃗ ici) ; 
- sont en opposition de phase en 𝒛 = 𝟎. 

 

c) Expression du champ magnétique  

On obtient SÉPARÉMENT les champs 𝐵⃗  incident et réfléchi via la relation de structure :  

𝑩𝒊⃗⃗⃗⃗ = 𝑩𝟎𝒆
𝒊(𝝎𝒕−𝒌𝒛)𝒆𝒚⃗⃗⃗⃗    avec  𝑩𝟎 =

𝑬𝟎

𝒄
   ⟺   𝑩𝒊⃗⃗⃗⃗ =

𝑬𝟎

𝒄
𝒄𝒐𝒔(𝝎𝒕 − 𝒌𝒛)𝒆𝒚⃗⃗⃗⃗  

𝑩𝒓⃗⃗ ⃗⃗  = 𝑩𝟎𝒆
𝒊(𝝎𝒕+𝒌𝒛)𝒆𝒚⃗⃗⃗⃗   avec  𝑩𝟎 =

𝑬𝟎

𝒄
   ⟺   𝑩𝒓⃗⃗ ⃗⃗  =

𝑬𝟎

𝒄
𝒄𝒐𝒔(𝝎𝒕 + 𝒌𝒛)𝒆𝒚⃗⃗⃗⃗  

Même comparatif que pour les champs électriques incident et réfléchi MAIS : 
Contrairement aux champs électriques, les champs magnétiques incident et réfléchi sont en phase en 𝒛 = 𝟎. 

 
SCHEMA - RESUME : 
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Rq : Lors de la réflexion métallique en incidence normale, on a 𝑟𝐸⊥ = −1 et 𝑟𝐵⊥ = 1. 

Avec 𝑟𝐸⊥ =
𝐸𝑟(𝑧=0

−,𝑡)

𝐸𝑖(𝑧=0
−,𝑡)

 𝑒𝑡 𝑟𝐵⊥ =
𝐵𝑟(𝑧=0

−,𝑡)

𝐵𝑖(𝑧=0
−,𝑡)

  les coefficients de réflexion en incidence normale. 

 

 
d) Etat surfacique du conducteur parfait 
Avec les expressions des champs électrique et magnétique réfléchis obtenus et des relations de passage, 
on peut déterminer l’existence d’éventuels charges ou courants surfaciques à la surface du conducteur. 
 
Relations de passage dans le cas général : 

∀𝑡, {
𝐸2⃗⃗⃗⃗ (𝑀0

+, 𝑡) − 𝐸1⃗⃗⃗⃗ (𝑀0
−, 𝑡) =

𝜎(𝑀0, 𝑡)

𝜀0
𝑛⃗ 1⟶2

𝐵2⃗⃗⃗⃗ (𝑀0
+, 𝑡) − 𝐵1⃗⃗⃗⃗ (𝑀0

−, 𝑡) = 𝜇0𝑗𝑆 ⃗⃗⃗⃗ (𝑀0, 𝑡) ∧ 𝑛⃗ 1⟶2

 

Dans le cas de l’incidence normale d’une OPPM sur un dioptre vide/conducteur parfait situé en 𝑧 = 0 : 

∀𝑡,

{
 
 

 
 0⃗ − 𝐸𝑣𝑖𝑑𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑧 = 0−, 𝑡) =

𝜎(𝑀0, 𝑡)

𝜀0
𝑒𝑧⃗⃗  ⃗

0⃗ − 𝐵𝑣𝑖𝑑𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑧 = 0−, 𝑡) = 𝜇0 (
𝑗𝑆𝑥(𝑀0, 𝑡)

𝑗𝑆𝑦(𝑀0, 𝑡)

0

) ∧ 𝑒𝑧⃗⃗  ⃗

 

         avec 𝐸𝑣𝑖𝑑𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑧 = 0−, 𝑡) = 𝐸𝑖⃗⃗  ⃗(𝑧 = 0
−, 𝑡) + 𝐸𝑟⃗⃗⃗⃗ (𝑧 = 0

−, 𝑡) =  𝐸0(𝑐𝑜𝑠(𝜔𝑡) − 𝑐𝑜𝑠(𝜔𝑡))𝑒𝑥⃗⃗  ⃗ = 0⃗  

 𝝈(𝑴𝟎, 𝒕) = 𝟎 : il n’y a donc pas de charge surfacique à la surface du conducteur parfait. 
 

         et  𝐵𝑣𝑖𝑑𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝑧 = 0−, 𝑡) = 𝐵𝑖⃗⃗  ⃗(𝑧 = 0
−, t) + 𝐵𝑟⃗⃗⃗⃗ (𝑧 = 0

−, t) =
𝐸0

𝑐
(𝑐𝑜𝑠(𝜔𝑡) + 𝑐𝑜𝑠(𝜔𝑡))𝑒𝑦⃗⃗⃗⃗   

 𝒋𝑺 ⃗⃗⃗⃗ = 𝟐
𝑬𝟎

µ𝟎𝒄
𝐜𝐨𝐬(𝝎𝒕)𝒆𝒙⃗⃗⃗⃗  : il y a un courant surfacique à la surface du conducteur parfait, le vecteur 

densité de courant est colinéaire au champ électrique incident.  
 

L’onde incidente engendre un courant à la surface du conducteur. Les électrons étant mis en mouvement 
par le champ électrique, les courants ainsi créés sont parallèles à ce dernier. Ces courants oscillants sont à 
leur tour une source du champ électromagnétique et sont notamment à l’origine de l’onde réfléchie. 
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4) Onde résultante : onde stationnaire 

Champ magnétique 

 

Incident 𝐵𝑖⃗⃗  ⃗ =  
𝐸0
𝑐
𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)𝑒𝑦⃗⃗⃗⃗  

Réfléchi 𝐵𝑟⃗⃗⃗⃗ =  
𝐸0
𝑐
𝑐𝑜𝑠(𝜔𝑡 + 𝑘𝑧)𝑒𝑦⃗⃗⃗⃗  

Résultant 𝑩⃗⃗ = 𝑩𝒊⃗⃗⃗⃗ + 𝑩𝒓⃗⃗ ⃗⃗  = 𝟐
𝑬𝟎
𝒄
𝒄𝒐𝒔(𝝎𝒕) 𝒄𝒐𝒔(𝒌𝒛)𝒆𝒚⃗⃗⃗⃗  

Champ électrique 

Incident 𝐸𝑖⃗⃗  ⃗ =  + 𝐸0𝑐𝑜𝑠(𝜔𝑡 − 𝑘𝑧)𝑒𝑥⃗⃗  ⃗ 

Réfléchi 𝐸𝑟⃗⃗⃗⃗ =  − 𝐸0𝑐𝑜𝑠(𝜔𝑡 + 𝑘𝑧)𝑒𝑥⃗⃗  ⃗ 

Résultant 𝑬⃗⃗ = 𝑬𝒊⃗⃗⃗⃗ + 𝑬𝒓⃗⃗ ⃗⃗ =  𝟐𝑬𝟎𝒔𝒊𝒏(𝝎𝒕) 𝒔𝒊𝒏(𝒌𝒛)𝒆𝒙⃗⃗⃗⃗  

 

Commentaires sur l’expression des champs résultants (Rappels ChEM5) : 

 Les dépendances spatiale (en 𝑧) et temporelle (en 𝑡) n’apparaissent pas au sein de la même fonction 

𝑐𝑜𝑠/𝑠𝑖𝑛 : on parle de SEPARATION DES VARIABLES spatio-temporelles (𝑧 et 𝑡) et d’onde STATIONNAIRE. 

 

 On peut aussi écrire les champs sous la forme : 

𝐵⃗ = 𝐵𝑖⃗⃗  ⃗ + 𝐵𝑟⃗⃗⃗⃗ = 𝐵𝑡𝑜𝑡(𝑧) ∙ 𝑐𝑜𝑠(𝜔𝑡)𝑒𝑦⃗⃗⃗⃗  

Avec 𝑩𝒕𝒐𝒕(𝒛) = 𝟐
𝑬𝟎

𝒄
𝒄𝒐𝒔(𝒌𝒛) 

𝐸⃗ = 𝐸𝑖⃗⃗  ⃗ + 𝐸𝑟⃗⃗⃗⃗ = 𝐸𝑡𝑜𝑡(𝑧) ∙ 𝑐𝑜𝑠 (𝜔𝑡 −
𝜋

2
) 𝑒𝑥⃗⃗  ⃗ 

Avec 𝑬𝒕𝒐𝒕(𝒛) = 𝟐𝑬𝟎𝒔𝒊𝒏(𝒌𝒛) 

Ainsi, en un point 𝑀 fixé, i.e. en 𝑧 fixé, les champs sont des fonctions sinusoïdales de 𝑡 de pulsation 𝜔 et 

d’amplitudes respectives |2 
𝐸0

𝑐
𝑐𝑜𝑠(𝑘𝑧)| et |2 𝐸0𝑠𝑖𝑛(𝑘𝑧)| qui dépendent donc du point considéré. 

Les champs vibrent sur place : il n’y a plus de propagation ni vers la droite, ni vers la gauche. 
Contrairement au cas de l’onde progressive où ils sont en phase, les champs électrique et magnétique 
vibrent en quadrature de phase pour l’onde stationnaire*. 

L’amplitude du champ électrique |2 𝐸0𝑠𝑖𝑛(𝑘𝑧)| s’annule périodiquement pour des valeurs de 𝑧 distantes 

de  
𝝅

𝒌
=

𝝀

𝟐
 : ce sont les NŒUDS DE VIBRATION. 

Entre deux nœuds du champ électrique se situe un maximum d’amplitude = VENTRE DE VIBRATION. 

Rq : On peut mener le même raisonnement sur l’amplitude du champ magnétique. 
 

 
 
 
 
 
 
 

* Comparatif des ondes progressives et stationnaires : cf annexe. 

  

Nœuds et ventres de vibration 
sont caractéristiques d’une onde 
stationnaire. 
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5) Solution de l’équation de d’Alembert en ondes stationnaires – Séparation des variables 

On note ici 𝑠(𝑧, 𝑡) la vibration scalaire associée à l’onde (𝑠(𝑧, 𝑡) = 𝐸𝑥(𝑧, 𝑡) ou 𝐵𝑦(𝑧, 𝑡)). 

L’étude de la réflexion d’une onde EM sur un conducteur parfait a montré que l’onde dans le vide est 
stationnaire. On introduit ici une méthode permettant de déterminer efficacement son expression à partir 
de l’équation de d’Alembert vérifiée dans le vide. 
La vibration associée à une onde stationnaire est de la forme : 𝑠(𝑧, 𝑡) = 𝐹(𝑡) ∙ 𝐾(𝑧) 

→ découplage des variables spatio-temporelles. 
Déterminons l’expression de 𝐹(𝑡) et 𝐾(𝑧) telles que 𝑠(𝑧, 𝑡) soit solution de l’équation de d’Alembert : 

𝝏𝟐𝒔

𝝏𝒛𝟐
=
𝟏

𝒄𝟐
𝝏𝟐𝒔

𝝏𝒕𝟐
 (𝑬𝟎) 

 

Méthode de 
SEPARATION 

DES 
VARIABLES 

Cf ex 8 TDEM5 

 

 Equivalence de l’équation de d’Alembert par injection de la solution : 

 𝐹 ≠ 0 et  𝐾 ≠ 0 :    (𝐸0) ⟺
𝑑²𝐾

𝑑𝑧²

𝐾(𝑧)
=

1

𝑐2

𝑑²𝐹

𝑑𝑡²

𝐹(𝑡)
 (𝐸1)   

 Découplage : les variables respectives 𝑧 et 𝑡 des fonctions 𝐹(𝑡) et 𝐾(𝑧) étant 
indépendantes, on a :  

(𝐸1) ⟺
𝑑²𝐾

𝑑𝑧²
= 𝛼𝐾(𝑧) et 

𝑑²𝐹

𝑑𝑡²
= 𝑐2𝛼𝐹(𝑡) 

avec α une constante 

 Solutions des EDL en 𝒛 et en 𝒕 : la forme des solutions dépend du signe de α. 
Seul le cas 𝜶 < 𝟎 est physiquement acceptable pour une onde stationnaire1, on a2 :  

𝐹(𝑡) = 𝐹0𝑐𝑜𝑠(𝑐√|𝛼|𝑡 + 𝜑𝑡) 𝑒𝑡  𝐾(𝑧) = 𝐾0𝑐𝑜𝑠 (√|𝛼|𝑧 + 𝜑𝑧) 

 Expressions usuelles : on pose 𝑘 = √|𝛼| et 𝜔 = 𝑘𝑐, il vient3 :  
𝑠(𝑧, 𝑡) = 𝐹0 ∙ 𝐾0 ∙ 𝑐𝑜𝑠(ω𝑡 + 𝜑𝑡) ∙ 𝑐𝑜𝑠(𝑘𝑧 + 𝜑𝑧) 

1 cf ex 8 TDEM5 : le cas 𝛼 ≥ 0 est à rejeter : en effet, il correspond soit à une solution 𝐹(𝑡) divergente, soit à 
une solution 𝐹(𝑡) transitoire. 
2 solutions d’EDL du type oscillateur harmonique. 
3 cohérent avec § C.4 ; il faut ensuite tenir compte d’éventuelles conditions aux limites, cf § C.6. 
 
 
 

6) Applications aux cavités à une dimension – Mode d'onde stationnaire 

Dans un milieu continu illimité, la longueur d’onde 𝜆 (et donc 𝑘) et la fréquence 𝑓 (et donc 𝜔) des ondes 
solutions de l’équation d’onde peuvent prendre n’importe quelle valeur.  
A l’inverse, si une onde se propage dans un milieu limité spatialement et que des conditions aux limites 
du milieu sont imposées alors 𝒌 et 𝝎 sont quantifiés, on les note 𝑘𝑛 et 𝜔𝑛, qui dépendent des dimensions 
du milieu. La solution de l’équation d’onde associée aux valeurs 𝒌𝒏 et 𝝎𝒏 est appelée mode propre 𝒏. 
 

a) Modes propres pour la corde vibrante  

Les vibrations d’une corde fixée à ses deux extrémités (∀ 𝑡, 𝑦(𝑧 = −𝑎, 𝑡) = 0 = 𝑦(𝑧 = 0, 𝑡)) sont des 
modes d’onde stationnaire. 
Ex : cordes d’instruments (guitare, violon ou piano). 

Résultats obtenus : 𝑘𝑛 =
𝑛𝜋

𝑎
 avec 𝑛 ∈ ℕ∗et on en déduit : 𝜆𝑛 =

2𝜋

𝑘𝑛
 ; 𝜔𝑛 = 𝑘𝑛𝑐 et 𝑓𝑛 =

𝜔𝑛

2𝜋
.  

→ Visualisation expérimentale des modes propres avec la corde de Melde, cf TP10E. 
Rq : Démarche similaire pour l’étude des tuyaux sonores. 
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b) Modes d’onde électromagnétique → « cavité » 
 Une cavité électromagnétique est un volume vide délimité par des parois conductrices.  
Considérons une cavité à une dimension, formée de deux plans parfaitement conducteurs parallèles, 
distants de 𝑎 le long du même axe (Oz). On recherche les ondes pouvant exister dans cette cavité.  

 

Rq : Un LASER comporte une cavité similaire. 
 
Dans la cavité, l’onde va subir des réflexions successives au niveau des dioptres vide/conducteur ainsi cette 
onde est stationnaire, avec un nœud de vibration au niveau de chaque paroi d’après les relations de 
passage.  
On recherche le champ électrique dans la cavité sous la forme d’une onde stationnaire polarisée 

rectilignement : 𝐸⃗ (𝑧, 𝑡) = 𝐹(𝑡) ∙ 𝐾(𝑧) ∙ 𝑒𝑥⃗⃗  ⃗.  
Cette onde doit vérifier :  

- l’équation de d’Alembert dans le vide : ∆𝐸⃗ =
1

𝑐2
𝜕2𝐸⃗ 

𝜕𝑡2
  

- les conditions aux limites imposées par les relations de passage en 𝑧 = 0 et −𝑎 :  

∀ 𝑡, 𝐸⃗ (𝑧 = 0−, 𝑡) = 0⃗   𝑒𝑡   𝐸⃗ (𝑧 = −𝑎+, 𝑡) = 0⃗  
 

Les deux plans conducteurs parallèles forment une cavité résonante de dimension 𝒂 entraînant 
l’apparition de modes d’ondes stationnaires. Le mode 𝒏 a : 

pour longueur d’onde : 𝝀𝒏 =
𝟐𝒂

𝒏
  et pour fréquence 𝒇𝒏 =

𝒏𝒄

𝟐𝒂
, 𝒏 ∈ ℕ∗ 

Ainsi, les ondes pouvant exister dans la cavité sont celles pour lesquelles la longueur de la cavité 
correspond à un nombre entier de demi-longueurs d’onde. 
Toute onde pouvant exister dans la cavité s’écrit comme une superposition des modes propres. 
Mathématiquement, pour une onde polarisée rectilignement selon 𝑒𝑥⃗⃗  ⃗ : 

𝐸⃗ (𝑧, 𝑡) = ∑𝐸0𝑛 cos (
𝑛𝜋𝑐

𝑎
𝑡 + 𝜑𝑛) ∙ sin (

𝑛𝜋

𝑎
𝑧) ∙ 𝑒𝑥⃗⃗  ⃗

∞

𝑛=1

 

L’amplitude 𝐸0𝑛 et la phase 𝜑𝑛 du mode d’ordre 𝑛 sont fixées par les conditions initiales. 

Rq : Mêmes résultats que pour la corde vibrante fixée en ses 2 extrémités car mêmes équation d’onde et CL. 
 

 Exercice classique : Etablir l’expression de 𝐸⃗ (𝑧, 𝑡) et en déduire les résultats de quantification de 𝜆 et 𝑓. 
i) Appliquer la méthode de séparation des variables (donnée p.12). 
ii) Exploiter les conditions aux limites pour en déduire les valeurs possibles du vecteur d’onde.  
iii) Conclure en exploitant la relation entre 𝑘 et 𝜆 et entre 𝜆 et 𝑓. 
 
  

− 𝑎 0 
𝑧 
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On retrouve ces résultats à l’aide de quelques schémas : 

Méthode 

 

Détermination 
de l’expression 

des  𝝀𝒏 des 
modes propres 

avec des 
schémas ! 

 Nœuds de vibration imposés en z = - 𝑎 et z = 0 par les parois conductrices ;  
 Mode fondamental (𝑛 = 1) mode avec nombre de nœuds minimal i.e. 2 ; 
 Un nœud supplémentaire en passant du mode 𝒏 au mode 𝒏 + 𝟏 ; 
 Longueur d’onde du mode 𝑛 déduite de 𝑎 et de la distance entre deux nœuds 

consécutifs : 
𝝀𝒏

𝟐
 ; 

 Détermination 𝝀𝒏 pour 𝒏 = 𝟏, 𝟐 et 𝟑 puis généralisation pour 𝑛 quelconque. 
 

 
 
 
 Retour sur le cas du micro-ondes – Aspects énergétiques : 
Le chauffage par micro-ondes se fait par conversion d’énergie électromagnétique en énergie thermique : le 

champ 𝐸⃗  variable agit sur les molécules d’eau polaires des aliments qui, pour suivre les oscillations du 
champ, se mettent en rotation et dissipent l’énergie que le champ a rayonné.  

A partir des expressions des champs 𝐸⃗  et 𝐵⃗  (cf § C.4), on a :  

𝛱⃗⃗ =  𝑐𝜀0𝐸0
2𝑠𝑖𝑛(2𝜔𝑡) 𝑠𝑖𝑛(2𝑘𝑧) 𝑒𝑧⃗⃗  ⃗ 

Ainsi aux nœuds de 𝛱⃗⃗ , le transfert d’énergie du champ à l’aliment est nul et au contraire il est maximal aux 

ventres de 𝛱⃗⃗ . Pour obtenir une température plus homogène de l’aliment, on utilise un plateau tournant. 
 

Rq : En mécanique quantique, on verra une autre situation où apparaissent des modes propres : 
Onde de matière :  
Cas de la particule quantique libre confinée dans un puits de potentiel infini à une dimension.  
On considère une particule quantique qui ne peut se déplacer que le long de l’axe (Oz) entre z = -𝑎 et z = 0 et 
qui, en ses positions accessibles, n’est soumise à aucune interaction (énergie potentielle : V(-𝑎 < z < 0) = 0 : 
particule « libre »).  
Par ailleurs, on a des parois « infranchissables » en z = - 𝑎 et z = 0 (V(z = - 𝑎 ou 0) → ∞) : la particule est 
donc confinée entre z = - 𝑎 et z = 0. 
→ On traite cet exemple par analogie avec la corde vibrante fixée en ses 2 extrémités. 

On en déduit que l’énergie de la particule est quantifiée (avec 𝐸 =
1

2
𝑚𝑣² et la relation de De Broglie). 
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Annexe : Ondes progressives et ondes stationnaires 
 

Onde plane 
monochromatique 

Progressive Stationnaire 

Expression 
proportionnelle à … 

cos (𝜔𝑡 − 𝑘𝑥) cos(𝜔𝑡) ∙ cos (𝑘𝑥) 

Relation de dispersion 
dans le vide 

𝜔 = 𝑘𝑐 

Chronophotographie 

  
Double périodicité La longueur d’onde et la période 𝑇 vérifient : 𝜆 = 𝑐𝑇 

Propagation Progression de l’onde à la célérité c 
Pas de progression mais vibration 

« sur place » 

Déformation 
Tous les points sont soumis, au cours 
du temps, aux mêmes perturbations. 

Certains points ne vibrent pas 
(nœuds) alors que d’autres subissent 
des vibrations maximales (ventres). 

 

 

x x 


