TDCN – Capacités numériques : vérification des 2^e et 3^e lois de Kepler

Capacités exigibles

MP2I: Mouvement dans un champ de gravitation newtonien

<u>Capacité numérique</u> : exploiter, à l'aide d'un langage de programmation, des données astronomiques ou satellitaires pour tester les deuxième et troisième lois de Kepler

1 Vérification de la 2^e loi de Kepler

On dispose des positions de la planète Mars autour du Soleil à différentes dates, l'intervalle de temps étant identique entre deux dates successives et valant 84 jours.

Les distances sont données en unité astronomique (ua = 149,6. 10⁶ km) et les angles en degrés.

Position	1	2	3	4	5	6	7	8	9
r (ua)	1,381	1,430	1,535	1,629	1,666	1,636	1,548	1,441	1,382
θ	0	53	100	141	178	215	255	301	354

Travail à faire:

1) Calculer pour chaque point ses coordonnées cartésiennes et représenter sur un graphe les différentes positions de Mars. A-t-on l'allure de la trajectoire attendue ?

2) Vérification de la seconde loi de Kepler :

Calculer l'aire balayée sur chaque intervalle et de vérifier qu'elle reste constante. On pourra garder les distances en ua. On pourra également approximer l'aire à celle d'un triangle O M(ti) M(ti+1):

$$aire = \frac{1}{2} \|\overrightarrow{OM_i} \wedge \overrightarrow{OM_{i+1}}\| = \frac{1}{2} r_i r_{i+1} sin(\theta_{i+1} - \theta_i)$$

<u>Suggestion</u>: Faire une liste avec les aires calculées sur chaque intervalle, tracer un diagramme représentant les aires calculées pour les différentes dates et conclure.

2 Vérification de la 3^e loi de Kepler

On dispose pour les différentes planètes du système solaire du demi-grand -axe de leur trajectoire et de la période de leur mouvement.

Planètes	Demi-grand axe a en ua	Période		
Mercure	0,387	87,97 j		
Vénus	0,723	224,7 ј		
Terre	1	365,26 ј		
Mars	1,524	1 an 322 j		
Jupiter	5,203	11 ans 315 j		
Saturne	9,555	29 ans 167 j		
Uranus	19,22	84 ans 27 j		
Neptune	30,10	164 ans 280 j		

Les distances sont données en unité astronomique (ua = 149,6. 106 km).

On souhaite vérifiée la troisième loi de Kepler, à savoir :

$$\frac{a^3}{T^2} = cste$$
 - la même constante pour toutes les planètes du système solaire.

Sachant que $\frac{a^3}{T^2} = \frac{GM}{4\pi^2}$ où G est la constante gravitationnelle et M la masse du Soleil, on souhaite aussi estimer la masse du Soleil.

Travail à faire:

- 1) Tracer a³ en fonction de T², après avoir pris soin d'écrire a en m et T en s. Conclure.
- 2) Faire une régression linéaire et retrouver la valeur de la masse M.