MP Devoir surveillé n°4 — Physique le 19/12/25

Durée 3h

L’'usage de la calculatrice ou de tout dispositif électronique
est interdit

N.B. : Le candidat attachera la plus grande importance a la clarté, a la précision et a la concision de la
rédaction. Si un candidat est amené a repérer ce qui peut lui sembler étre une erreur d’énoncé, il le
signalera sur sa copie et devra poursuivre sa composition en expliquant les raisons des initiatives qu’il a
été amené a prendre.

RAPPEL DES CONSIGNES
e Utiliser uniquement un stylo noir ou bleu foncé non effagable pour la rédaction de votre composition ;
d’autres couleurs, excepté le vert, peuvent étre utilisées, mais exclusivement pour les schémas et la mise
en évidence des résultats.
e Ne pas utiliser de correcteur.
e Numéroter les copies : “i/nombre total”.
e Respecter les notations de |'énoncé et préciser, dans chaque cas, la numérotation de la question
posée.
e Ecrire le mot FIN a la fin de votre composition.

Ex 1 : Transports planétaires

Ce probleme étudie divers aspects physiques du voyage a I’échelle planétaire. Il est composé de deux
parties indépendantes, la premiére envisage le déplacement d’un train dans un tunnel creusé dans la
sphere terrestre, la seconde étudie la montée d'un ascenseur le long d'un cable vertical fixé a
I’équateur. Dans tout le probleme la Terre est assimilée a un corps sphériqgue homogene de rayon rr, de
centre Ot et de masse volumique homogeéne pr.

Pour les applications numériques on prendra pr = 5,50.10° kg.m™, rr = 6,38.10° m, et les résultats
numériques seront donnés avec un seul chiffre significatif. On rappelle la valeur de la constante
universelle de la gravitation de Newton G =6,67 10 m*> kg ’.s™. Les vecteurs sont surmontés d’un

chapeau s’ils sont unitaires U, ou d’une fleche dans le cas général OP . Une quantité surmontée d’un

. L. . .~ de
point désigne la dérivée totale par rapport au temps de cette quantité 6 = E
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.- Le métro gravitationnel

Dans toute cette partie on néglige tous les effets de la rotation de la terre sur elle-méme et on se place
dans le référentiel géocentrique que I'on supposera galiléen.

I.LA.—Etude préliminaire

On considére un point P situé a I'intérieur de la sphére terrestre. On note O;P =T =r0, et g(P)le
champ gravitationnel créé par la terre en P.

1— Justifier que G(P) est porté par U, et que son module ne dépend que de r, on notera donc

g(P) = g(r)d, . En utilisant le théoreme de Gauss gravitationnel déterminer I'expression de g(r) en
4

fonction de w® = — 7G|, etr.
3

2 — Déduire de la question précédente que la force de gravitation s’exergant sur un point de masse
m situé en P dérive de I'énergie potentielle
1 2,2
E,(r) =E, +Ema) r

ou Epp est une constante qui dépend de la référence choisie et que I'on ne demande pas d’expliciter.
Quelle est la dimension de w ?

I.B. — Le tunnel droit
On relie deux points A et B de I’équateur terrestre par un tunnel cylindrique traversant la Terre selon le
schéma de la figure 1 qui présente également les notations utilisées.

FIG. 1 — Le tunnel droit
On considere un mobile ponctuel P de masse m se déplacant dans le tunnel sous |'effet du champ
gravitationnel terrestre. La position du mobile est repérée sur le segment [AB] par la coordonnée x telle

_—

que PH = xU, ou le vecteur unitaire U, est colinéaire a AB et de méme sens et H est la projection

orthogonale de Or sur [AB]. On note finalement h = O7H.

Dans toute la partie |, on suppose que le point P reste en permanence dans I'axe du tunnel grace a un
systéme de confinement. Il n'y a donc pas de contact avec les parois et donc pas de frottement avec
celles-ci. Un tel confinement est envisageable en utilisant des parois magnétiques. On suppose enfin
gu'un vide suffisamment poussé a été créé dans le tunnel. Sous toutes ces hypotheses, on considérera
que la seule force qui s'applique au mobile est la force de gravitation qu'exerce sur lui la terre.
Al'instant t = 0, on abandonne le mobile au point A sans vitesse initiale.

3 — Déterminer I'équation différentielle (linéaire) du second ordre vérifiée par x(t). En déduire
I'expression de x(t) en fonction de h, rr, w et t.

4 — Déterminer I'expression de la vitesse maximale atteinte par le point P sur le trajet. En quel point
cette vitesse est-elle atteinte?

5 — Exprimer la durée 1o du trajet entre AB et calculer sa valeur numérique.
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Il. - Ascenseur spatial

Ce probléme étudie un aspect physique de la réalisation d'une idée récurrente dans de nombreux
contextes « l'ascenseur spatial ». Il s'agit d'un mécanisme permettant de s'extraire du champ de
pesanteur terrestre sans utiliser de fusée. On suppose pour cela qu'un cable réalisé par filage de
nanotubes de carbone, de plus de 100 000 km de long, inextensible, a pu étre dressé a la verticale d'un
point de I'équateur de la Terre. Ce cible posséde une masse linéique A = 1,00 kg.m™ extrémement
faible et une résistance mécanique extrémement forte par rapport a un cable en acier, qui le rend
capable de supporter de tres fortes tensions sans casser. Dans cette partie, le référentiel terrestre est en
rotation uniforme autour de I'axe des poles par rapport au référentiel géocentrique supposé galiléen.
effectue un tour en un jour sidéral de durée T, = 8,62.10 s. La terre est toujours supposée sphérique et

4
homogéne de masse m; = EzzrfluT =5,98.10°"kg.

II.LA. — Etude de I'équilibre du cable

Les notations sont celles de la figure 3 : Le point d'ancrage E du cable est un point de I'équateur
terrestre, rr est le rayon de la Terre et O son centre. L'altitude d'un point M du fil est notée z, r=rr+z
est le rayon OrM et h est la hauteur totale du cable. Le point H représente I'extrémité haute du cable : zy

. . . .oy . . A OT M
=hetry=rr+h. Ce point est libre. On pourra enfin utiliser le vecteur unitaire U, = .
r
zZ
M H
y—o
r
h
({
)
FI1G. 3 — Vue générale de la Terre et du cible
6 — Rappeler la définition de I'orbite géostationnaire terrestre. Montrer que le rayon r;

1/3 2

N . ;. Gm . .. T
correspondant a cette orbite s’écrit rs = L avec w, la pulsation sidérale terrestre: = —.
2 g o T

ag

o

Dans toute la suite du probléme, on considérera un cdble de longueur totale h = 4r - ry, on a donc O7H =
ry = 4rs. On note g; le module du champ de gravitation en r = r;, c'est-a-dire la quantité telle que f; = mg;
ou fs est le module de la force de gravitation subie par un corps de masse m situé en r = r. Enfin, on note
g le module du champ de gravitationenr =rr.

7 — En écrivant que le cable est en équilibre, montrer que la dérivée de la tension du cable en M

vérifie la relation
dT P r>or
dr r’ o,

ou X est un parametre que I'on exprimera en fonction de A et g;. En admettant que T(ry) = 0, déterminer
I'expression de la tension T(r) en fonction de x, r et rs.

8 — Déterminer les valeurs numériques de rs, gs, de la tension du fil au point d'ancrage notée T¢ =
T(r7), ainsi que la valeur maximale Tnax de T(r). Commenter le résultat obtenu, on donne le module
d'Young de I'acier £, = 210 GPa et d'un cable en nanotubes de carbone €. =1 TPa.
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Il.B. — Montée de la cage d’ascenseur le long d’un fil

Le systéme de propulsion de la cabine est modélisé sur la figure 4. La montée est assurée par la rotation
en sens inverses de deux gros cylindres de caoutchouc identiques, chacun de rayon R. = 1,00 m, de
masse m, = 2,00 .10 kg, de moment d'inertie par rapport a son axe J = mcRZ/2. Ces cylindres sont mus
par un moteur électrique exercant sur chacun un couple. Le moment résultant de ce couple est

l:g = +Fol]y pour le cylindre de gauche et [, = —l"oliy pour le cylindre de droite. Les deux cylindres

serrent le cable grace a un ressort reliant leurs centres. La longueur a vide | = R, et la constante de
raideur k du ressort permettent d'assurer un roulement sans glissement au contact du cable. On prend f;
= 0,5 pour le coefficient de frottement statique entre le caoutchouc des cylindres et le cable. On néglige
les masses de la cabine, de ses occupants et des moteurs par rapport a celle des cylindres.

FIG. 4 - Vue générale des cylindres assurant la montée de la cabine
On négligera toute action de l'air (frottement et vent) sur le systéme.

Dans le référentiel (E,U,,0,,U,) avec U, = U, la cabine, repérée par le point M, esten Eat=0. La

montée de z = 0 (ou la vitesse est nulle) a z = h dure au total t,, = 4 jours et se décompose en une phase
d'accélération constante d'intensité a = 1 m.s? pendant une durée t, suivie d'une phase 3 vitesse
constante de module v,.

9 —  Calculer les valeurs numériques de la durée to, de la vitesse vg et de I'altitude zy atteintes a la fin
de la premiere phase. On vérifiera que zo<<h.

10 — Justifier le fait que I'on puisse considérer que pendant la premiere phase, la force de gravitation
exercée par la Terre sur le systeme est sensiblement constante et négliger une des forces par rapport a
celle-ci.

11 — Expliguer comment la montée du systéme le long du fil peut affecter la verticalité du cable au
cours de sa montée.

Dans toute la suite de cette partie, on supposera que le fil reste parfaitement immobile, vertical, tendu
et on négligera la ou les forces susceptibles d'affecter la verticalité du fil.

12 — L'angle de rotation du cylindre de droite est noté 8, compté positivement comme indiqué sur la
figure 4, le vecteur vitesse angulaire de ce cylindre est donc Q= —my. On prend 8 = 0 pour z = 0.

Etablir la relation entre 9 et z.

13 — Enoncer la loi de Coulomb relative a la situation étudiée.
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On peut montrer que la valeur minimale de la constante de raideur k du ressort assurant le roulement
sans glissement du cylindre de droite sur le fil pendant la premiere phase (accélérée) du mouvement
vaut ki, = 2,16.10* N/m.

14 — Justifier par un calcul numérique que la montée du systéme n'affecte pas sensiblement la tension
du fil dans la premiere phase.

Ex 2 : Oscillateur mécanique
dx

Dans tout le probléme un point surmontant une fonction désigne sa dérivée temporelle : x = o

On considére un ressort d'extrémités N et N
M, de raideur k, de longueur i vide [; et
de longueur I{t) = NM 4 un instant ¢ quel-
conque. Ce ressort est suspendu verticale-
ment par son extrémité N 4 un point O fixe (ko)
d’un support immeobile dans le référentiel ga-
liléen d’étude R. A son extrémité M est ac- P lm
croché un point matériel P de masse m. L'ex- M >
trémité N (resp. M) du ressort se confond

avec le point O (resp_ P) (cf figure ]). FIGURE 1 — Ressort et oscillateur vertical

On suppose que le mouvement du point ma-

tériel P reste vertical : en se repérant dans
le systéme de coordonnées cartésiennes (O,dy,,,@,) d’origine O, le point P appartient 4 la

droite (O, 4, ).

Dans tout le probléme, le ressort reste dans son domaine élastique de fonctionnement associé a
une force de rappel proportionnelle & son allongement. Le champ de pesanteur § est uniforme
égal & § = gti, avec g > 0. On néglige toute forme de frottement.

On suppose tout d’abord que le ressort a une masse m, nulle.

NL{;'Z

10000

0 — 1. Etablir 'expression de I’énergie potentielle élastique &, x du ressort dont on prendra 'ori-
gine lorsque la longueur du ressort est égale a sa longueur & vide. On exprimera &£,y en
fonction de &, I et L.

O — 2. Etablir, en fonction de m, g et I, 'expression de I’énergie potentielle de pesanteur &, ,, du
point matériel P dont on prendra 'origine en O.

(1 — 3. En déduire I'expression de 1'énergie mécanique &£, du point matériel P de masse m dans
le référentiel galiléen R en fonction notamment de i(t).

O — 4. Etablir I'équation différentielle du mouvement du point matériel P vérifiée par I(¢) dans
le référentiel galiléen R.

O — 5. Résoudre 1'équation différentielle obtenue & la question précédente en supposant qu’a
t = 0, le point matériel P est laché sans vitesse initiale de la position I{t = 0) = L > 0.
On fera apparaitre une pulsation wy.

Quelle condition doit-on imposer & L pour que le point matériel P ne heurte pas le support
fixe oli est suspendu le ressort 7 On exprimera cette condition en fonction de &, {y, m et g.
Qualifier le mouvement observé : tracer 1’allure de {(¢) en fonction de ¢.

Donner 'expression de la période Ty du mouvement du point matériel P et calculer sa
valeur numérique pour k = 0,300 x 72 = 2,96 N-m™! et m = 300g.
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Dans les 6 questions suivantes, on tient compte de la masse m, non nulle du ressort. On
suppose que ’expression de 1'énergie potentielle élastique £,y du ressort établie 4 la question
1 n’est pas modifiée. Par contre, son énergie potentielle de pesanteur £ est affectée par cette
modification. Pour la déterminer, on suppose que, quelque soit sa longueur I, la masse m, du
ressort est uniformément répartie sur toute sa longueur [ et que, pour tout z compris entre 0
et [, la tranche élémentaire de ressort comprise entre z et z + dz posséde, dans le référentiel
R, une vitesse proportionnelle 4 z. On conserve les mémes origines que précédemment pour les
énergies potentielles.

O - 6. Etablir Pexpression de 'énergie potentielle de pesanteur £, ,, associée au ressort en fonction
de m,, g et L.

0O — 7. Etablir I'expression de 1'énergie cinétique £ du ressort en fonction de m, et .

O — 8. En déduire l'expression de l'énergie mécanique &, du systéme constitué par le point
matériel P de masse m et le ressort de masse m, dans le référentiel galiléen R en fonction
de m, my, k, g, lg et L.

QO - 9. Etablir I'équation différentielle du mouvement du point matériel P vérifiée par I(t) dans

le référentiel galiléen R. Commenter.

O — 10. Résoudre I'équation différentielle obtenue & la question précédente en supposant qu’a

t = 0, le point matériel P est laché sans vitesse initiale de la position I{t = 0) = L. On
fera apparaitre une pulsation wy.

Qualifier le mouvement observé en supposant que le point matériel P ne heurte pas le
support fixe.

Déterminer l'expression de la période 77 du mouvement du point matériel en fonction
de Ty, m et m, puis calculer sa valeur numérique pour k = 0,300 X 72 &~ 2,96 N . m~1,
m = 300g et m, = 36,0 g (on pourra utiliser I'approximation (1 + z)* ~ 1 + az).

 — 11. Quelle condition doit satisfaire m, pour que 'écart relatif entre T et 77 ne dépasse pas

1 %? On fera I'application numérique dans les conditions de la question précédente.

Le point matériel P de masse m est maintenant astreint & se déplacer, sans frottement, horizon-
talement sur une glissiére parfaite qui se confond avec la droite (O’,i,) (cf figure 2). Le ressort
précédent, dont on suppose la masse m, nulle dans toute la suite du probléme, est toujours
accroché par son extrémité N au point O fixe dans le référentiel galiléen d’étude R et par son
extrémité M au point matériel P :

Sl

ko) =3

. e
L 3

-
FIGURE 2 — QOscillateur horizontal
On se place maintenant dans le systéme de coordonnées cartésiennes (O ,ii,,,, @, ) d'origine O/

telle que la droite (O,#,) soit perpendiculaire & la droite (O,@,) : le point matériel P est ainsi
repéré par son abscisse x sur la droite ((¥,i,). On note [, la distance OC.

0O — 12. Etablir Pexpression de I'énergie potentielle &p,p du point matériel P en fonction de &, I,

I, et = en prenant origine de I’énergie potentielle de pesanteur en O’ et celle de 1'énergie
potentielle élastique du ressort pour { = Ij.

DS4_CCMP 6/8 MP La Fayette



- 13.
- 14.
- 15.
- 186.

En fonction du paramétre ., discuter des positions d’équilibre du point P et de leur
stabilité respective : on exprimera les abscisses d’équilibre z, associées en fonction des
données et on donnera les allures correspondantes de £, p en fonction de x en précisant
les valeurs remarquables.

Dans quel cas peut-on parler de barriére de potentiel 7 Préciser sa hauteur U, en fonction
des données.

Etablir I’équation différentielle du mouvement du point matériel P vérifiée par x(t) dans

le référentiel galiléen R.
Que représente physiquement d‘i‘_’ép (x) en termes de force 7

Transformer 1'équation différentielle du mouvement en 2 équations différentielles d’ordre 1
en variables ug(t) = z(t) et wy(t) = £(2).

En introduisant les estimations wug, de uo(t) et u, de u;(t) aux instants ¢, = n/At pour
n € N ol /At désigne le pas de discrétisation temporelle, former les 2 relations exprimant
Ugn41 €6 U1 ne1 en fonction de ug,, et 4y, déduites de la méthode d'Euler explicite.
Quelles valeurs doit-on donner pour n =0 & ugn et U1 n 7

Pour k = 0,300 x 72 &~ 2,96N -m™, m = 300g, Iy = 1,00m et /. = 0,200m, on effectue la
résolution numeérique de I'équation différentielle du mouvement pour déterminer z(t) et &(¢) en
fonction de ¢ pour 2 conditions initiales A et B différentes. Les résultats sont présentés sur la

figure 3.

a-17.
Q- 18.

Cas A: z(0) =200 met 2(0) =0 m/s Cas B:z(0) = 1,00 met £(0) = 0 m/s

(t)
[m/s]

0 5 10 15 20
t[s]

FIGURE 3 — Solutions numériques pour deux conditions initiales distinctes

Comparer le plus précisément possible la nature du mouvement dans les 2 cas.

Dans le cas B, établir une expression approchée de la valeur moyenne {z{t)} des oscillations
(en fonction de I, et Iy) et de leur période T en fonction de T, I, et Iy,

Effectuer les applications numériques et comparer les résultats aux valeurs lues sur la
figure 3. Conclure sur les approximations effectuées.
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0 — 19. Les 2 cas A et B correspondent 4 deux types de mouvements différents du point P. Dans

le cas oti les conditions initiales sont du type (¢ = 0) = X > 0 et &(¢t = 0) = 0, établir
la condition que doit vérifier Xy pour que 1'on soit dans le cas A.
En conservant les valeurs & = 0,300 x 7% & 2,96 N-m™! et Iy = 1,00m, on a représenté sur la

figure 4 l'allure de di‘_‘f (z) en fonction de x dans les cas I, < I, (& gauche) et I, > [, (& droite).

| o |
.

<, L>ls Se

R '
Y4
fe 0,5

7 ol
o/, 0.0

1,0

/—:: = —0.3
.
7

VL =10

— 1. =051, s — =111
— - L=061 || 54 - L =120 || 15

..... L =071 e =131,

—i.:’: -1.0 =05 0,0 0.5 ll,[] 1.5 -1.0 =03 D-,O 0.3 1..0
z [m] z [m]

FIGURE 4 — Représentation graphique de la dérivée de 'énergie potentielle de P

On suppose pouvoeir modéliser la fonction %E;:ﬁ(x) par un polynéme de degré 3 de la variable 2
de la forme :
d&, p

o (z) ~ Qe + Bux®

U — 20. Commenter cette affirmation et préciser en fonction de la valeur de I. les signes des

constantes ay, et Gu.
Réécrire alors I'équation différentielle du mouvement du point matériel P vérifiée par z(2).

Cette équation est connue sous le nom d'équation de Duffing non amortie.

-- FIN DE L'ENONCE —
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