Chapitre 8

Séries entières

Sommaire

8.1	Gén	éralités et rayon de convergence	2
	8.1.1	Définition	2
	8.1.2	Rayon de convergence	3
	8.1.3	Convergence simple	5
8.2	8.2 Détermination du rayon de convergence		
	8.2.1	Par double inégalité	7
	8.2.2	Règle de d'Alembert	8
	8.2.3	Autres méthodes pour déterminer un rayon de convergence	10
8.3	Opé	rations sur les séries entières	14
8.4	Étuc	le de la somme d'une série entière	16
	8.4.1	Convergence normale d'une série entière	16
	8.4.2	Étude de la somme d'une série entière de variable réelle	17
	8.4.3	Primitive de la somme d'une série entière de variable réelle	18
	8.4.4	Dérivée de la somme d'une série entière de variable réelle	19
8.5	Déve	eloppements en série entière usuels	22
8.6	Fond	ctions développables en séries entières	24
	8.6.1	Opérations sur les fonctions développables en série entière	24
	8.6.2	Série de Taylor	28
	8.6.3	Application à l'étude de la régularité d'une fonction	28
8.7	8.7 Séries entières et équations différentielles		
	8.7.1	Développement en série entière de $x \mapsto (1+x)^{\alpha} \dots \dots \dots \dots \dots \dots \dots$	29
	8.7.2	Quelques exemples et exercices	31

8.1 Généralités et rayon de convergence

8.1.1 Définition

Définition 1

Soit (a_n) une suite à valeurs complexes.

1. La série entière associée à la suite (a_n) est la série de fonctions $\sum f_n$ où :

$$f_n: \left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & a_n z^n \end{array} \right.$$

Par abus, la série entière $\sum f_n$ sera notée $\sum a_n z^n$.

- 2. L'ensemble \mathcal{D} des nombres complexes z tels que la série numérique $\sum a_n z^n$ soit convergente est appelé domaine de convergence de la série entière.
- 3. La somme de la série entière $\sum a_n z^n$ est la fonction :

$$S: \left\{ \begin{array}{ccc} \mathcal{D} & \to & \mathbb{C} \\ z & \mapsto & \displaystyle\sum_{n=0}^{+\infty} a_n z^n \end{array} \right.$$

Remarques:

1. Il se peut que l'indexation de la suite (a_n) démarre à l'entier naturel n_0 , dans ce cas la série entière associée à $(a_n)_{n\geqslant n_0}$ sera notée $\sum_{n\geqslant n_0}a_nz^n$.

Parfois, il pourra être utilise de poser par convention que :

$$\forall n \in [n, n_0], \quad a_n = 0.$$

2. La série entière de la variable réelle associée à une suite (a_n) est la série de fonctions $\sum f_n$ où :

$$f_n: \left\{ \begin{array}{ccc} \mathbb{R} \cap \mathcal{D} & \to & \mathbb{C} \\ t & \mapsto & a_n t^n \end{array} \right.$$

3. Il arrive parfois d'étudier des séries entières dites lacunaires.

Soit (a_n) une suite à valeurs complexes. La série $\sum a_n z^{2n}$ est une série entière $\sum b_n z^n$ où la suite (b_n) est définie par :

$$\forall n \in \mathbb{N}, \quad \begin{cases} b_{2n+1} = 0 \\ b_{2n} = a_n \end{cases}$$

Plus généralement, soit $(\nu_n)_{n\in\mathbb{N}}$ une suite d'entiers naturels strictement croissante. La série $\sum a_n z^{\nu_n}$ est une série entière $\sum b_n z^n$ où la suite (b_n) est définie par :

$$\forall n \in \mathbb{N}, \quad \begin{cases} b_n = a_k & \text{si } n = \nu_k \text{ où } k \in \mathbb{N} \\ b_n = 0 & \text{sinon} \end{cases}$$

Exemples:

1. La série géométrique $\sum z^n$ est une série entière. On sait qu'elle est convergente lorsque |z|<1. Dans ce cas :

$$\sum_{n=0}^{+\infty} z^n = \frac{1}{1-z}.$$

2. La série entière $\sum \frac{z^n}{n!}$ est convergente pour tout $z \in \mathbb{C}$ et vaut par définition :

$$\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z.$$

3. Tout fonction polynomiale $z \mapsto \sum_{n=0}^{N} a_n z^n$ est une série entière (lacunaire). On remarque :

$$\forall n \geqslant N+1, \quad a_n=0.$$

8.1.2 Rayon de convergence

Lemme 2 (d'Abel)

Soit $\sum a_n z^n$ une série entière.

On suppose qu'il existe $z_0 \in \mathbb{C}$ tel que $(a_n z_0^n)_{n \in \mathbb{N}}$ soit une suite bornée.

Alors pour tout $z \in \mathbb{C}$ tel que $|z| < |z_0|$, la série numérique $\sum a_n z^n$ est absolument convergente.

\underline{Preuve} :

 $\overline{\text{Il existe}} \ M \geqslant 0 \ \text{tel que} :$

 $\forall n \in \mathbb{N}, \quad |a_n z_0^n| \leqslant M.$

On suppose que $z_0 \neq 0$.

Soit $z \in \mathbb{C}$ tel que $|z| < |z_0|$, on a :

$$\forall n \in \mathbb{N}, \quad |a_n z^n| = |a_n z_0^n| \left| \frac{z}{z_0} \right|^n \leqslant M \left| \frac{z}{z_0} \right|^n.$$

Or $\left|\frac{z}{z_0}\right| < 1$. La série géométrique $\sum \left|\frac{z}{z_0}\right|^n$ est donc convergente. Le théorème de comparaison des séries positives par inégalité assure que la série $\sum |a_n z^n|$ est convergente. Par conséquent, la série $\sum a_n z^n$ est absolument convergente.

Dans le cas où $z_0 = 0$, le résultat est vrai car la série numérique $\sum a_n z^n$ est constante égale à a_0 et est donc absolument convergente.

Lemme 3

Soit $\sum a_n z^n$ une série entière. Notons :

$$\mathcal{B}_a = \{ r \in \mathbb{R}_+ \mid (|a_n|r^n) \text{ est born\'ee} \}.$$

- 1. Si \mathcal{B}_a est majorée. Alors :
 - (a) $\sup \mathcal{B}_a$ existe. On notera $R_a = \sup \mathcal{B}_a$.
 - (b) L'ensemble \mathcal{B}_a est égale à $[0, R_a[$ ou $[0, R_a]$.
- 2. Si \mathcal{B}_a est non majorée. Alors $\mathcal{B}_a = [0, +\infty[$.

Preuve:

1. Supposons que \mathcal{B}_a soit majorée et non vide puisque $0 \in \mathcal{B}_a$. L'axiome de la borne supérieure assure que sup \mathcal{B}_a existe. Montrons que :

$$[0, R_a \subset \mathcal{B}_a \subset [0, R_a].$$

Soit $r \in \mathcal{B}_a$. Par définition de la borne supérieure, R_a est en particulier un majorant de \mathcal{B}_a . Donc $0 \le r \le R_a$. Ainsi $\mathcal{B}_a \subset [0, R_a]$. Montrons que $[0, R_a \subset \mathbb{B}_d]$. La preuve est similaire au lemme d'Abel. Soit $r \in [0, R_a]$. La caractérisation de la borne supérieure assure qu'il existe $r_0 \in]0, R_a]$ tel que $r_0 \in \mathcal{B}_a$ avec $r < r_0 \le R_a$. Ainsi la suite $(a_n r_0^n)$ est bornée par un réel M. Or :

$$\forall n \in \mathbb{N}, \quad |a_n r^n| = |a_n r_0^n| \left| \frac{r}{r_0} \right|^n \leqslant |a_n r_0^n| \leqslant M.$$

 $\operatorname{car}\left|\frac{r}{r_0}\right| < 1$. La suite $(a_n r^n)$ est donc bornée. Donc $r \in \mathcal{B}_a$. On en déduit que : $[0, R_a] \subset \mathcal{B}_a$. Finalement :

$$[0, R_a \subset \mathcal{B}_a \subset [0, R_a].$$

Ceci prouve que \mathcal{B}_a est égale à $[0, R_a]$ ou $[0, R_a]$.

2. Supposons que \mathcal{B}_a est non majoré. Montrons que $\mathcal{B}_a = [0, +\infty[$. On sait par définition que $\mathcal{B}_a \subset [0, +\infty[$. Montrons que l'inclusion réciproque. Soit $r \in [0, +\infty[$. Comme \mathcal{B}_a est non majorée, il existe $r_0 \in \mathcal{B}_a$ tel que $r_0 > r$. Ainsi :

$$\forall n \in \mathbb{N}, \quad |a_n r^n| = \left| a_n r_0^n \frac{r^n}{r_0^n} \right| = |a_n r_0^n| \left| \frac{r}{r_0} \right|^n \leqslant |a_n r_0^n|$$

$$\operatorname{car}\left|\frac{r}{r_0}\right| < 1.$$

Comme la suite $(a_n r_0^n)$ est bornée. On en déduit que la suite $(a_n r^n)$ est bornée. Donc $r \in \mathcal{B}_a$. On a ainsi montré que $[0, +\infty[\subset \mathcal{B}_a]$. Par double inclusion, on obtient :

$$\mathcal{B}_a = [0, +\infty[.$$

П

Définition 4 (Rayon de convergence)

Soit $\sum a_n z^n$ une série entière.

1. La borne supérieure dans $\overline{\mathbb{R}}_+$ de l'ensemble $\{r \in \mathbb{R}_+ \mid (|a_n|r_n) \text{ est bornée}\}$ est appelé rayon de convergence de la série entière $\sum a_n z^n$. Si on note ce rayon de convergence R_a :

$$R_a = \sup \{r \in \mathbb{R}_+ \mid (|a_n|r^n) \text{ est born\'ee}\} \in \overline{\mathbb{R}}_+.$$

- 2. Le disque de convergence de la série entière $\sum a_n z^n$ est le disque ouvert $D(0, R_a)$.
- 3. L'intervalle de convergence de la série entière $\sum a_n z^n$ est l'intervalle ouvert] $-R_a, R_a$ [.

Remarques:

- 1. Dire que la suite $(a_n r^n)_{n\geqslant 0}$ est bornée est équivalent à dire la suite $(|a_n| r^n)_{n\geqslant 0}$ est bornée.
- 2. Dans le cas où $R = +\infty$ cela revient à dire que pour tout $r \in \mathbb{R}_+$ la suite $(a_n r^n)_{n \ge 0}$ est bornée. Dans ce cas, le disque ouvert de convergence est \mathbb{C} et l'intervalle ouvert de convergence est \mathbb{R} .

Exemples:

- 1. Le rayon de convergence de la série exponentielle $\sum \frac{z^n}{n!}$ est $+\infty$.
- 2. Le rayon de convergence de la série géométrique $\sum z^n$ est 1.

8.1.3 Convergence simple

Théorème 5

Soit $\sum a_n z^n$ une série entière de rayon de convergence $R_a.$ Soit $z\in\mathbb{C}$:

- 1. Si $|z| < R_a$ alors la série numérique $\sum a_n z^n$ est absolument convergente.
- 2. Si $|z| > R_a$ alors la série numérique $\sum a_n z^n$ est diverge grossièrement.
- 3. Si $|z|=R_a$, nous n'avons pas de résultats généraux. Une étude dépendant de $\sum a_n z^n$ doit être effectuée.

<u>Remarque</u>: On a ainsi l'égalité $R_a = \sup \left\{ r \geqslant 0 \mid \sum a_n r^n \text{ converge absolument } \right\}$

 \underline{Preuve} : Soit $\sum a_n z^n$ une série entière de rayon de convergence R_a et $z \in \mathbb{C}$. Rappelons que par définition,

$$R_a = \sup \{r \ge 0 \mid (a_n r^n)_{n \in \mathbb{N}} \text{ est bornée } \}$$

- 1. Si $|z| < R_a$ alors il existe $r \in \mathbb{R}_+$ tel que $|z| < r < R_a$. Comme $(a_n r^n)_{n \in \mathbb{N}}$ est bornée. D'après le lemme d'Abel, $\sum a_n z^n$ est absolument convergente.
- 2. Si $|z| > R_a$ alors la suite $(a_n z^n)_{n \in \mathbb{N}}$ n'est pas bornée donc ne converge pas vers 0. Ainsi, la série $\sum a_n z^n$ diverge grossièrement.
- 3. Considérons la série $\sum_{n\geqslant 1}\frac{z^n}{n}$ dont le rayon de convergence est 1.

Pour z=-1, on obtient au signe près la série harmonique alternée $\sum_{n\geqslant 1}\frac{(-1)^n}{n}$ qui est convergente de somme $-\ln(2)$.

Pour z=1, on obtient la série harmonique $\sum_{n\geqslant 1}\frac{1}{n}$ qui est divergente.

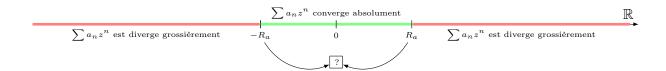
Corollaire 6

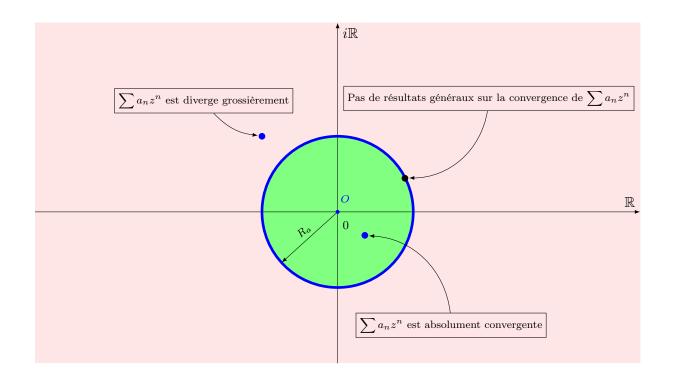
Soit $\sum a_n z^n$ une série entière de rayon de convergence R_a . Soit \mathcal{D} le domaine de convergence de la série entière.

- Si $R_a = 0$ alors $\mathcal{D} = \{0\}$.
- Si $R_a = +\infty$ alors $\mathcal{D} = \mathbb{C}$
- Si $R_a \in]0, +\infty[$ alors :

$$D(0,R_a)\subset\mathcal{D}\subset\overline{D(0,R_a)}$$

• Si $z \in \mathcal{C}(0, R_a)$, les natures des séries numériques $\sum a_n z^n$ ne suivent pas de règles générales.





Théorème 7

Soit $\sum a_n z^n$ une série entière de rayon de convergence R_a . On considère les ensembles suivants :

$$\begin{cases} \mathcal{B}_{a} = \{r \in \mathbb{R}_{+} \mid (a_{n}r^{n}) \text{ est born\'ee} \} \\ \mathcal{C}_{a} = \{r \in \mathbb{R}_{+} \mid (a_{n}r^{n}) \text{ est convergente} \} \\ \mathcal{C}_{a}^{0} = \{r \in \mathbb{R}_{+} \mid (a_{n}r^{n}) \text{ converge vers } 0 \} \\ \mathcal{S}\mathcal{C}_{a} = \left\{r \in \mathbb{R}_{+} \mid \sum a_{n}r^{n} \text{ converge} \right\} \\ \mathcal{S}\mathcal{A}\mathcal{C}_{a} = \left\{r \in \mathbb{R}_{+} \mid \sum a_{n}r^{n} \text{ converge absolument} \right\} \end{cases}$$

On a les inclusions:

$$[0, R_a] \subset \mathcal{SAC}_a \subset \mathcal{SC}_a \subset \mathcal{C}_a^0 \subset \mathcal{C}_a \subset \mathcal{B}_a \subset [0, R_a]$$

et les égalités :

$$R_a = \sup \mathcal{B}_a = \sup \mathcal{C}_a = \sup \mathcal{C}_a^0 = \sup \mathcal{SC}_a = \sup \mathcal{SAC}_a.$$

<u>Preuve</u>: Montrons que l'inclusion $[0, R_a \subset \mathcal{SAC}_a$.

Soit $r \in [0, R_a[$ (dans le cas où $R_a = +\infty$, ceci revient à dire que $r \ge 0$). Comme $\mathcal{B}_a \subset [0, R_a]$. Il existe $r_0 \in \mathcal{B}_a$ tel que $r < r_0 \leqslant R_a$. Ainsi pour tout $n \in \mathbb{N}$:

$$0 \leqslant |a_n r^n| = |a_n r_0^n| \left| \frac{r}{r_0} \right|^n.$$

Comme $r_0 \in \mathcal{B}_a$, il existe $M \geqslant 0$ tel que :

$$\forall n \in \mathbb{N}, \quad |a_n r_0^n| \leqslant M.$$

Ainsi:

$$\forall n \in \mathbb{N}, \quad 0 \leqslant |a_n r^n| \leqslant M \left| \frac{r}{r_0} \right|^n.$$

Or la série géométrique $\sum \left|\frac{r}{r_0}\right|^n$ est convergente puisque $\left|\frac{r}{r_0}\right| < 1$. D'après le théorème de comparaison des séries positives par inégalité, on en déduit que la série $\sum a_n r^n$ converge absolument. Finalement $r \in \mathcal{SAC}_a$.

On vient de prouver l'inclusion

$$[0, R_a[\subset \mathcal{SAC}_a$$

Pour prouver les autres inclusions, on remarque que si $r \in \mathcal{SAC}_a$, par définition la série $\sum a_n r^n$ converge absolument, donc la série $\sum a_n r^n$ est convergente. Donc la suite $\lim_{n \to +\infty} a_n r^n = 0$. Ainsi la suite $(a_n r^n)$ est convergente. Finalement, la suite $(a_n r^n)$ est bornée.

$$\mathcal{SAC}_a \subset \mathcal{SC}_a \subset \mathcal{C}_a^0 \subset \mathcal{C}_a \subset \mathcal{B}_a$$

Comme \mathcal{B}_a est égal à $[0, R_a]$ ou $[0, R_a[$. On a bien l'inclusion.

$$[0, R_a[\subset \mathcal{SAC}_a \subset \mathcal{SC}_a \subset \mathcal{C}_a^0 \subset \mathcal{C}_a \subset \mathcal{B}_a \subset [0, R_a]$$

On en déduit que :

$$R_a = \sup \mathcal{B}_a = \sup \mathcal{C}_a = \sup \mathcal{C}_a^0 = \sup \mathcal{SC}_a = \sup \mathcal{SAC}_a.$$

8.2 Détermination du rayon de convergence

8.2.1 Par double inégalité

Meth 8

Soit $\sum_{n} a_n z^n$ une série entière de rayon de convergence R_a . Soit $r \in \mathbb{R}_+$.

Si l'une des conditions suivantes est vérifiées :

- 1. La suite $(a_n r^n)$ est bornée.
- 2. La suite $(a_n r^n)$ est convergente.
- 3. La suite $(a_n r^n)$ est converge vers 0.
- 4. La série $\sum a_n r^n$ est convergente.
- 5. La série $\sum a_n r^n$ est absolument convergente. alors $R_a \geqslant r$.

<u>Preuve</u>: En effet, un tel réel r est dans $[0, R_a]$ d'après la proposition précédente.

Meth 9

Soit $\sum_{n} a_n z^n$ une série entière de rayon de convergence R_a . Soit $r \in \mathbb{R}_+$.

П

Si l'une des conditions suivantes est vérifiées :

- 1. La suite $(a_n r^n)$ n'est pas bornée.
- 2. La suite $(a_n r^n)$ est divergente.
- 3. La suite $(a_n r^n)$ ne converge pas vers 0.
- 4. La série $\sum a_n r^n$ est divergente.
- 5. La série $\sum |a_n| r^n$ est divergente.

alors $R_a \leqslant r$.

 $\underline{Preuve}:$ En effet, un tel réel r est dans $[R_a,+\infty[$ d'après la proposition précédente. $\hfill\Box$

Théorème 10

Soit $\sum a_n z^n$ et $\sum b_n z^n$ des séries entières de rayon de convergence respectifs R_a et R_b .

- 1. Si $a_n = \underset{n \to +\infty}{O}(b_n)$ alors $R_a \geqslant R_b$.
- 2. Si $a_n = \underset{n \to +\infty}{o}(b_n)$ alors $R_a \geqslant R_b$.
- 3. Si $a_n \underset{n \to +\infty}{\sim} (b_n)$ alors $R_a = R_b$.

 \underline{Preuve} :

1. Supposons que $a_n = \mathop{O}_{n \to +\infty}(b_n)$. Ainsi il existe un réel $M \geqslant 0$ et un rang $n_0 \in \mathbb{N}$ tel que :

$$\forall n \geqslant n_0, \quad |a_n| \leqslant M|b_n|.$$

Soit $r \in \mathcal{B}_b$. Par définition la suite $(b_n r^n)$ est bornée par un réel C. Ainsi :

$$\forall n \geqslant n_0, \quad |a_n r^n| \leqslant M |b_n r^n| \leqslant MC.$$

Donc la suite $(a_n r^n)$ est elle aussi bornée. On en déduit que : $r \in \mathcal{B}_a$.

Par conséquent, on a l'inclusion : $\mathcal{B}_b \subset \mathcal{B}_a$. En passant aux bornes supérieures, on en déduit que :

$$\sup \mathcal{B}_b \leqslant \sup \mathcal{B}_a.$$

Ce qui revient à : $R_b \leqslant R_a$.

2. Rappelons que si $a_n = \mathop{o}_{n \to +\infty}(b_n)$ alors $a_n = \mathop{O}_{n \to +\infty}(b_n)$.

D'après ce qui précède, on a $R_b \leqslant R_a$.

$$a_n = \underset{n \to +\infty}{O}(b_n)$$
 et $b_n = \underset{n \to +\infty}{O}(a_n)$

Par conséquent $R_b \leqslant R_a$ et $R_b \leqslant R_a$. Par antisymétrie, $R_a = R_b$.

8.2.2 Règle de d'Alembert

3. Si $a_n \underset{n \to +\infty}{\sim} (b_n)$ alors :

Rappelons la règle de d'Alembert :

Théorème 11 (Règle de d'Alembert)

Soit (u_n) une suite à valeurs complexes ne s'annulant pas à partir d'un certain rang.

On suppose que : $\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \ell \in [0, +\infty].$

- 1. Si $0 \le \ell < 1$, alors la série $\sum u_n$ est absolument convergente.
- 2. Si $\ell > 1$, alors la série diverge grossièrement.
- 3. Si $\ell = 1$, on ne peut pas conclure avec cette règle.

<u>Exemple</u>: Déterminons le rayon de convergence de la série entière $\sum_{n>0} \frac{n+1}{2^n} z^n$.

Pour $r \in]0, +\infty[$. La suite $(u_n(r)) = \left(\frac{n+1}{2^n}r^n\right)$ ne s'annule pas. Calculons :

$$\left| \frac{u_{n+1}(r)}{u_n(r)} \right| = \left| \frac{n+2}{2^{n+1}} r^{n+1} \frac{2^n}{(n+1)r^n} \right| = \frac{n+2}{2(n+1)} r \xrightarrow[n \to +\infty]{} \frac{r}{2}.$$

Si r < 2 alors $\frac{r}{2} < 1$. La règle de d'Alembert assure que $\sum_{n \geqslant 0} \frac{n+1}{2^n} r^n$ est absolument convergente. Donc $R_a \geqslant 2$.

Si r > 2 alors $\frac{r}{2} > 1$. La règle de d'Alembert assure que $\sum_{n \geqslant 0} \frac{n+1}{2^n} r^n$ diverge grossièrement. Donc $R_a \leqslant 2$.

En conclusion, le rayon de convergence de la série entière $\sum_{n>0} \frac{n+1}{2^n} z^n$ vaut 2.

<u>Exemple</u>: Considérons la série entière $\sum \frac{(-1)^n}{2n+1} z^n$ dont le rayon de convergence est noté R. Pour $r \in]0, +\infty[$.

La suite $(u_n(r)) = \left(\frac{(-1)^n}{2n+1}r^n\right)$ ne s'annule pas. Calculons :

$$\left| \frac{u_{n+1}(r)}{u_n(r)} \right| = \left| \frac{(-1)^{n+1}(2n+1)r^{n+1}}{(-1)^n(2n+3)r^n} \right| = \frac{2n+1}{2n+3}r \xrightarrow[n \to +\infty]{} r.$$

- Si r < 1 alors la règle de d'Alembert assure que $\sum \frac{(-1)^n}{2n+1} r^n$ est absolument convergente. Donc $R \geqslant 1$.
- Si r > 1 alors la règle de d'Alembert assure que $\sum \frac{(-1)^n}{2n+1} r^n$ diverge grossièrement. Donc $R \leqslant 1$.

En conclusion, le rayon de convergence de la série entière $\sum \frac{(-1)^n}{2n+1} z^n$ vaut 1.

 $\underline{\textit{Exemple}}$: Considérons la série entière lacunaire $\sum n!z^{n^2}$ dont le rayon de convergence est noté R.

Pour $r \in]0, +\infty[$. La suite $(u_n(r)) = (n!r^{n^2})$ ne s'annule pas. Calculons :

$$\left| \frac{u_{n+1}(r)}{u_n(r)} \right| = \left| \frac{(n+1)!r^{(n+1)^2}}{n!r^{n^2}} \right| = (n+1)r^{2n+1} \xrightarrow[n \to +\infty]{} \begin{cases} 0 & \text{si } r < 1 \\ +\infty & \text{si } r > 1 \end{cases}$$

D'après la règle de d'Alembert,

- Si r < 1, la série numérique $\sum n! r^{n^2}$ est absolument convergente. Donc $R \geqslant 1$.
- Si r>1, la série numérique $\sum n! r^{n^2}$ diverge grossièrement. Donc $R\leqslant 1$.

En conclusion, le rayon de convergence de la série entière $\sum n!z^{n^2}$ est 1.

<u>Exemple</u>: Considérons la série entière lacunaire $\sum {2n \choose n} z^{3n}$ dont le rayon de convergence est noté R.

Pour $r \in]0, +\infty[$. La suite $(u_n(r)) = (\binom{2n}{n}r^{3n})$ ne s'annule pas. Calculons :

$$\left| \frac{u_{n+1}(r)}{u_n(r)} \right| = \left| \frac{\binom{2n+2}{n+1} r^{3n} r^3}{\binom{2n}{n} r^{3n}} \right| = \frac{(2n+2)(2n+1)}{(n+1)^2} r^3 \xrightarrow[n \to +\infty]{} 4r^3.$$

Remarquons que:

$$4r^3 < 1 \iff r < \frac{1}{4\frac{1}{3}}$$

D'après la règle de d'Alembert :

- Si $r < \frac{1}{4^{\frac{1}{3}}}$, la série numérique $\sum \binom{2n}{n} r^{3n}$ est absolument convergente. Donc $R > \frac{1}{4^{\frac{1}{3}}}$.
- Si $r > \frac{1}{4^{\frac{1}{3}}}$, la série numérique $\sum \binom{2n}{n} r^{3n}$ est diverge grossièrement. Donc $R < \frac{1}{4^{\frac{1}{3}}}$.

En conclusion:

$$R = \frac{1}{4^{\frac{1}{3}}}$$

 $\underline{Remarque}$: La règle de d'Alembert pour les séries numériques peut ne pas fonctionner lorsque le rapport $\left| \frac{u_{n+1}}{u_n} \right|$

Corollaire 12 (Règle de d'Alembert pour les séries entières non lacunaires)

Soit $\sum_{n\geqslant 0} a_n z^n$ une série entière (non lacunaire). On suppose que :

1. la suite $(a_n)_{n\geqslant 0}$ ne s'annule pas au voisinage de $+\infty$.

2.
$$\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \ell \in [0, +\infty]$$

alors le rayon de convergence de la série est $R = \frac{1}{\ell}$.

Avec la convention dans $[0, +\infty]$ que $\frac{1}{0} = +\infty$ et $\frac{\ell}{+\infty} = 0$.

<u>Remarque</u>: Cette règle ne s'applique pas aux séries entières lacunaires comme $\sum {2n \choose n} z^{3n}$.

 $\underline{Preuve}:$ Soit $r\in\mathbb{R}_+^*$. Posons $(u_n)=(|a_n|\,r^n)$ qui est strictement positive. Par hypothèse :

$$\lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \ell r \in [0, +\infty]$$

- Nous allons utiliser la règle de d'Alembert pour les séries numériques. 1. Si $\ell=0$, pour tout $r\in\mathbb{R}_+, \lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\ell r=0<1$. Donc la série $\sum_{n\geqslant 0}|a_n|\,r^n$ converge toujours donc $R=+\infty$.
 - 2. Si $\ell=+\infty$, pour tout $r\in\mathbb{R}_+^*$, $\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=\ell r=+\infty>1$. Cela montre que la série $\sum_{n\geqslant 0}|a_n|\,r^n$ diverge grossièrement (sauf lorsque r=0) donc R=0.
 - 3. Si $\ell \in]0, +\infty [$. Pour $r > \frac{1}{\ell}, \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \ell r > 1.$

Donc la série $\sum_{n\geq 0} |a_n| r^n$ diverge. Cela implique que $r\geqslant R$. Comme cette inégalité est vraie pour tout $r>\frac{1}{\ell}$, on en déduit que :

$$\frac{1}{\ell} \geqslant R$$

D'autre part, pour $r < \frac{1}{\ell}, \lim_{n \to +\infty} \frac{u_{n+1}}{u_n} = \ell r < 1.$ Donc la série $\sum_{n \geqslant 0} |a_n| \, r^n$ converge. Donc $r \leqslant R$. Comme cette inégalité est vraie pour tout $r < \frac{1}{\ell}$, on en déduit que :

$$\frac{1}{\ell} \leqslant R$$

Par antisymétrie, $R = \frac{1}{\ell}$

Proposition 13

Soit $\alpha \in \mathbb{R}$. La série entière $\sum_{n \geq 1} n^{\alpha} z^n$ a un rayon de convergence égal à 1.

<u>Preuve</u>: On pose $a_n = n^{\alpha}$. On vérifie bien que n^{α} ne s'annule pas si $n \ge 1$. De plus

$$\frac{(n+1)^{\alpha}}{n^{\alpha}} = \left(1 + \frac{1}{n}\right)^{\alpha} \underset{n \to +\infty}{\longrightarrow} 1$$

La règle de d'Alembert pour les séries entières assure que le rayon de convergence vaut

$$R = \frac{1}{1} = 1$$

Autres méthodes pour déterminer un rayon de convergence

Effectuons quelques remarques générales pour calculer un rayon de convergence.

Proposition 14

Les séries entières $\sum a_n z^n$ et $\sum |a_n| z^n$ ont même rayon de convergence.

Preuve: Remarquons que:

$$\mathcal{B}_a = \{r \in \mathbb{R}_+ \mid (a_n r^n) \text{ est born\'ee}\} = \{r \in \mathbb{R}_+ \mid (|a_n| r^n) \text{ est born\'ee}\} = \mathcal{B}_{|a|}.$$

On en déduit que : $\sup \mathcal{B}_a = \sup \mathcal{B}_{|a|}$. Ainsi, les séries entières $\sum a_n z^n$ et $\sum |a_n| z^n$ ont même rayon de convergence.

Proposition 15

Soit $\sum a_n z^n$ une série entière de rayon de convergence R_a . Soit $P \in \mathbb{C}[X]$ un polynôme non nul.

Les séries entières $\sum a_n z^n$ et $\sum P(n)a_n z^n$ ont même rayon de convergence.

<u>Preuve</u>: Posons pour tout $n \in \mathbb{N}$, $b_n = P(n)a_n$.

Premier cas: Si $P = \lambda$ est un polynôme constant non nul avec $\lambda \in \mathbb{C}^*$.

On remarque:

$$\mathcal{B}_a = \{r \in \mathbb{R}_+ \mid (a_n r^n) \text{ est born\'ee}\} = \{r \in \mathbb{R}_+ \mid (\lambda a_n r^n) \text{ est born\'ee}\} = \mathcal{B}_b.$$

Donc $R_a = R_b$.

<u>Deuxième cas</u>: Si $\deg(P) \geqslant 1$. Soit $r \in \mathcal{B}_b$. Montrons que $r \in [0, R_a]$. Remarquons que $\lim_{n \to +\infty} |P(n)| = +\infty$.

Il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$, $|P(n)| \ge 1$. Ainsi :

$$\forall n \geqslant n_0, \quad |a_n r^n| \leqslant |P(n)a_n r^n| = |b_n r^n|.$$

Or la suite $(b_n r^n)$ est bornée. Donc la suite $(a_n r^n)$ l'est aussi. Donc $r \in \mathcal{B}_a$.

On a montré que : $\mathcal{B}_b \subset \mathcal{B}_a$. Donc $\sup \mathcal{B}_b \leqslant \sup \mathcal{B}_a$.

Soit $r \in [0, R_a[$. Il existe $r_0 \in]r, R_a[$ tel que $r_0 \in \mathcal{B}_a$. Or

$$\forall n \in \mathbb{N}, \quad |b_n r^n| = |P(n)a_n r^n| = \left| a_n P(n) \frac{r^n}{r_0^n} r_0^n \right| = |a_n r_0^n| \left| P(n) \left(\frac{r}{r_0} \right)^n \right|.$$

Remarquons que $\left|\frac{r}{r_0}\right| < 1$. Ainsi $\lim_{n \to +\infty} \left| P(n) \left(\frac{r}{r_0}\right)^n \right| = 0$ d'après les croissances comparées. La suite $\left(\left| P(n) \left(\frac{r}{r_0}\right)^n \right|\right)$ est donc bornée. D'autre part la suite $(a_n r_0^n)$ est bornée puisque $r_0 \in \mathcal{B}_a$. On en déduit que $(b_n r^n)$ l'est aussi.

En conclusion, $r \in \mathcal{B}_b$. On a prouvé que $[0, R_a] \subset \mathcal{B}_b$.

Ainsi : $\sup[0, R_a] \leq \sup \mathcal{B}_b$. Donc $R_a \leq R_b$.

Par antisymétrie, on en déduit que : $R_a = R_b$

Proposition 16

Soit $\sum a_n z^n$ une série entière de rayon de convergence R_a . Soit $F \in \mathbb{C}(X)$ une fraction rationnelle non nulle.

Les séries entières $\sum a_n z^n$ et $\sum F(n)a_n z^n$ ont même rayon de convergence.

<u>Preuve</u>: On sait qu'à partir d'un certain rang $n_0 \in \mathbb{N}$, F(n) est bien définie.

Notons pour tout $n \geqslant n_0$, $b_n = F(n)a_n = \frac{P(n)}{Q(n)}a_n$. où $P,Q \in \mathbb{C}[X]$. En utilisant la proposition précédente aux polynômes Q puis P:

$$R_b = R_{(Q(n)b_n)} = R_{(P(n)a_n)} = R_a.$$

Proposition 17

Soit (b_n) et (c_n) deux suites à valeurs complexes. On définit la suite (a_n) par :

$$\forall n \in \mathbb{N}, \quad \begin{cases} a_{2n} = b_n \\ a_{2n+1} = c_n \end{cases}$$

Alors $R_a = \min(\sqrt{R_b}, \sqrt{R_c})$.

П

<u>Preuve</u>: Soit $r \in \mathbb{R}_+$. Raisonnons par équivalences:

$$\begin{array}{llll} r \in \mathcal{B}_a & \iff & (a_n r^n) \text{ est born\'ee} \\ & \iff & (a_{2n} r^{2n}) \text{ est born\'ee} & \text{et} & (a_{2n+1} r^{2n+1}) \text{ est born\'ee} \\ & \iff & (b_n r^{2n}) \text{ est born\'ee} & \text{et} & (c_n r^{2n+1}) \text{ est born\'ee} \\ & \iff & (b_n r^{2n}) \text{ est born\'ee} & \text{et} & (c_n r^{2n}) \text{ est born\'ee} \\ & \iff & (b_n (r^2)^n) \text{ est born\'ee} & \text{et} & (c_n (r^2)^n) \text{ est born\'ee} \\ & \iff & r^2 \in \mathcal{B}_b \text{ et} & r^2 \in \mathcal{B}_c \\ & \iff & r^2 \in \mathcal{B}_b \cap \mathcal{B}_a & (\star). \end{array}$$

Si $r \in \mathcal{B}_a$ alors $r^2 \in \mathcal{B}_b$ et $r^2 \in \mathcal{B}_c$.

Or $\mathcal{B}_b \subset [0, R_b]$ et $\mathcal{B}_c \subset [0, R_c]$. Donc $r^2 \in [0, R_b]$ et $r^2 \in [0, R_c]$. Donc $r \leqslant \sqrt{R_b}$ et $r \leqslant \sqrt{R_c}$. Ainsi : $r \leqslant \min(\sqrt{R_b}, \sqrt{R_c})$. On a prouvé que $\mathcal{B}_a \subset [0, \min(\sqrt{R_b}, \sqrt{R_c})]$.

Ainsi $\sup \mathcal{B}_a \leqslant \sup[0, \min(\sqrt{R_b}, \sqrt{R_c})]$, ce qui donne : $R_a \leqslant \min(\sqrt{R_b}, \sqrt{R_c})$.

Réciproquement. Soit $r \in [0, \min(\sqrt{R_b}, \sqrt{R_c})[$. Ainsi $r < \sqrt{R_b}$ et $r < \sqrt{R_c}$. Donc $r^2 < R_b$ et $r^2 < R_c$. On en déduit que : $r^2 \in [0, R_b[\cap [0, R_c[]]]]$ Or rappelons que $[0, R_b[\subset \mathcal{B}_b \text{ et } [0, R_c[\subset \mathcal{B}_c$

D'après $(\star), r \in \mathcal{B}_a$. On a prouvé que $[0, \min(\sqrt{R_b}, \sqrt{R_c})] \subset \mathcal{B}_a$.

En passant aux bornes supérieures, on obtient : $\min(\sqrt{R_b}, \sqrt{R_c}) \leqslant R_a$.

En conclusion, par antisymétrie:

$$R_a = \min\left(\sqrt{R_b}, \sqrt{R_c}\right).$$

<u>Exercice E1</u>: Déterminer le rayon de convergence des séries entières suivantes.

$$1. \sum \frac{(-1)^n z^n}{\sqrt{n}}$$

$$2. \sum \binom{2n}{n} z^n$$

3.
$$\sum 2^n \ln(n) z^n$$

$$4. \sum (n+2^n i) z^n$$

Exercice E2 : Déterminer le rayon de convergence des séries entières suivantes.

1.
$$\sum \cos(n)z^n$$

$$2. \sum \frac{\sin n}{n} z^n$$

3.
$$\sum \tan\left(\frac{n\pi}{7}\right)z^n$$

4.
$$\sum_{n\in\mathbb{N}^*}d_nz^n$$
 où d_n est le nombre de diviseurs positifs de n

5.
$$\sum a_n z^n$$
 où a_n est la $n^{\text{ème}}$ décimale de π

<u>Exercice E3</u>: Déterminer le rayon de convergence des séries entières suivantes.

$$1. \sum z^{n^2}$$

2.
$$\sum 2^n z^{2^n}$$

$$3. \sum \frac{n^n}{n!} z^{3n}$$

$$4. \sum n! z^{n^2}$$

5.
$$\sum z^{n!}$$

Exercice E_4 : Déterminer le rayon de convergence de la série entière $\sum_{n\geqslant 1} a_n z^n$ dans chacun des cas suivants :

- 1. pour tout $n \in \mathbb{N}^*$, $a_n = \ln(n)$;
- 2. pour tout $n \in \mathbb{N}^*$, $a_n = \exp(n)$;
- 3. pour tout $n \in \mathbb{N}^*$, $a_n = \arcsin(1/n)$;
- 4. pour tout $n \in \mathbb{N}^*$, $a_n = \left(\frac{1}{1+\sqrt{n}}\right)^n$.

<u>Exercice E5</u>: Déterminer le rayon de convergence de la série entière $\sum_{n\geqslant 1}a_nx^n$ d'une variable réelle et préciser

l'intervalle de convergence dans chacun des cas suivants :

- 1. pour tout $n \in \mathbb{N}^*$, $a_n = \arctan(1/n^2)$;
- 2. pour tout $n \in \mathbb{N}^*$, $a_n = \arctan(n)$;
- 3. pour tout $n \in \mathbb{N}^*$, $a_n = \arctan(1/n)$.

<u>Exercice C6</u>: [Mines-Télécom] Soit (u_n) une suite définie par : $u_0 > 0$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + \frac{1}{u_n^2}$. Déterminer les réels x pour lesquels la série entière $\sum_{n \geqslant 0} u_n x^n$ converge.

<u>Exercice E7</u>: Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Déterminer le rayon de convergence de la série entière $\sum a_n z^{2n}$.

Exercice E8 : Soit $\sum a_n z^n$ une série entière de rayon de convergence R. Déterminer le rayon de convergence de $\sum a_n^2 z^n$.

<u>Exercice E9</u>: [Règle de Cauchy] Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$ telle que

$$\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \ell \in \mathbb{R}_+ \cup \{+\infty\}$$

Déterminer le rayon de convergence de la série $\sum_{n\in\mathbb{N}} a_n z^n$.

8.3 Opérations sur les séries entières

Définition 18

Soit $\sum a_n z^n$ et $\sum b_n z^n$ des séries entières.

La somme des séries entières $\sum a_n z^n$ et $\sum b_n z^n$ est la série entière $\sum (a_n + b_n) z^n$.

Théorème 19

Soit $\sum a_n z^n$ et $\sum b_n z^n$ des séries entières de rayon de convergence respectifs R_a et R_b .

1. Le rayon de convergence R de la série entière $\sum (a_n + b_n)z^n$ vérifie :

$$R \geqslant \min(R_a, R_b).$$

2. Pour tout $z \in \mathbb{C}$ avec $|z| < \min(R_a, R_b)$,

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n.$$

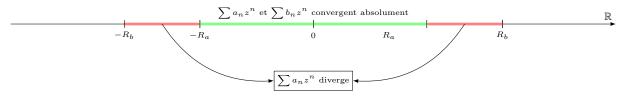
3. Si $R_a \neq R_b$ alors $R = \min(R_a, R_b)$.

Preuve:

- 1. Soit $z \in \mathbb{C}$ tel que $|z| < \min(R_a, R_b)$. On sait que les séries numériques $\sum a_n z^n$ et $\sum b_n z^n$ sont absolument convergentes. Ainsi le rayon de convergence R de la série entière $\sum (a_n + b_n)z^n$ vérifie $R \geqslant \min(R_a, R_b)$.
- 2. De plus, la série entière $\sum (a_n + b_n)z^n$ est absolument convergente et :

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n.$$

3. Sans perte de généralités, on peut supposer par exemple que : $R_a < R_b$. On sait dans ce cas que $R \geqslant R_a$. On peut illustrer la situation à l'aide du schéma ci-dessous :



Pour tout $r \in \mathbb{R}_+$ tel que $R_a < r < R_b$, on sait que $\sum a_n r^n$ est divergente et $\sum b_n r^n$ est convergente. Ainsi $\sum (a_n + b_n) r^n$ est divergente.

П

On en déduit que $R \leq r$. Donc $R \leq R_a$. En conclusion $R = R_a$.

Remarque : Dans le cas où $R_a = R_b$, il se peut que $R \neq R_a$. En effet considérons les séries entières $\sum z^n$ et $\sum -z^n$ dont les rayons de convergence valent 1. On remarque que $\sum (1-1)z^n$ est la série entière nulle dont le rayon de convergence est $+\infty$.

Définition 20

Soit $\sum a_n z^n$ et $\sum b_n z^n$ des séries entières. Le produit de Cauchy des séries entières $\sum a_n z^n$ et $\sum b_n z^n$ est la série entière $\sum c_n z^n$ avec :

$$\forall n \in \mathbb{N}, \quad c_n = \sum_{k=0}^n a_k b_{n-k} = \sum_{k=0}^n a_{n-k} b_k.$$

Théorème 21

Soit $\sum a_n z^n$ et $\sum b_n z^n$ des séries entières de rayon de convergence respectifs R_a et R_b .

1. Le rayon de convergence R du produit de Cauchy $\sum \left(\sum_{k=0}^{n} a_k b_{n-k}\right) z^n$ vérifie :

$$R \geqslant \min(R_a, R_b).$$

2. Pour tout $z \in \mathbb{C}$ avec $|z| < \min(R_a, R_b)$,

$$\sum_{n=0}^{+\infty} \left(\sum_{k=0}^n a_k b_{n-k} \right) z^n = \left(\sum_{n=0}^{+\infty} a_n z^n \right) \left(\sum_{n=0}^{+\infty} b_n z^n \right)$$

<u>Preuve</u>: Remarquons que pour tout $n \in \mathbb{N}$:

$$c_n z^n = \sum_{k=0}^n a_k z^k b_{n-k} z^{n-k}.$$

La série numérique $\sum c_n z^n$ est le produit de Cauchy des séries numériques $\sum a_n z^n$ et $\sum b_n z^n$.

Or pour tout $z \in \mathbb{C}$ tel que $|z| < \min(R_a, R_b)$, on sait que les séries numériques $\sum a_n z^n$ et $\sum b_n z^n$ sont absolument convergentes. On en déduit que leur produit de Cauchy $\sum c_n z^n$ l'est aussi et :

$$\sum_{n=0}^{+\infty} \left(\sum_{k=0}^n a_k b_{n-k}\right) z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) \left(\sum_{n=0}^{+\infty} b_n z^n\right).$$

La série numérique $\sum c_n r^n$ étant absolument convergente pour $r < \min(R_a, R_b)$. On en déduit que le rayon de convergence R de la séries entières $\sum c_n z^n$ vérifie :

$$R \geqslant \min(R_a, R_b).$$

 $\underline{Exemple}$: La série entière $\sum (n+1)z^n$ a un rayon de convergence égal à 1. Cette série est le produit de Cauchy des séries $\sum a_n z^n$ et $\sum b_n z^n$ où $a_n = b_n = 1$. On en déduit que :

$$\forall z \in \mathbb{C}, \quad |z| < 1, \quad \sum_{n=0}^{+\infty} (n+1)z^n = \frac{1}{1-z} \times \frac{1}{1-z} = \frac{1}{(1-z)^2}$$

Étude de la somme d'une série entière 8.4

Convergence normale d'une série entière 8.4.1

Théorème 22

Soit $\sum a_n z^n$ une série entière de rayon de convergence R_a . Soit $R \in [0, R_a[$

La série de fonction $\sum a_n z^n$ converge normalement, donc uniformément sur le disque fermé $\overline{D(0,R)}$.

Preuve: Posons pour tout $n \in \mathbb{N}$, $u_n : z \mapsto a_n z^n$.

Soit $R \in [0, R_a]$ fixé. Remarquons que pour tout $z \in \overline{D(0, R)}, |z| \leq R$

$$\forall n \in \mathbb{N}, \quad |u_n(z)| = |a_n z^n| \leqslant |a_n R^n|$$

Or $R \in \mathcal{SAC}_a$. Donc la série numérique $\sum a_n R^n$ est absolument convergente. Ains la série numérique $\sum |a_n R^n|$ converge. On en déduit que

la série de fonctions $\sum u_n(z)$ converge normalement sur $\overline{D(0,R)}$.

Elle converge donc uniformément sur $\overline{D(0,R)}$

Attention

En général, une série entière ne converge pas uniformément sur son disque ouvert de convergence $D(0, R_a)$.

 $\underline{\textit{Exemple}}$: Considèrons la série entière géométrique $\sum_{n=1}^{\infty} z^n$ dont le rayon de convergence est 1 .

- 1. Pour tout $\alpha < 1$, la série entière $\sum_{n \geqslant 0} z^n$ converge normalement sur $\bar{D}(0,\alpha)$ ou sur $[-\alpha,\alpha]$ si on travaille avec une variable réelle.
- 2. Étudions la convergence normale sur] 1,1[. Pour tout entier $n\geqslant 0, \|z\mapsto z^n\|_{\infty,]-1,1[}=1.$ Comme la série $\sum 1$ diverge, il n'y a pas convergence normale de la série entière sur] -1,1[.
- 3. On peut aussi montrer qu'il n'y a pas convergence uniforme sur] 1,1[. En effet, si c'était le cas, on pourrait appliquer le théorème de la double limite ce qui n'est pas possible car la série $\sum_{x\to 1^-} \left(\lim_{x\to 1^-} x^n\right)$ diverge.

Théorème 23 (Continuité)

Soit $\sum a_n z^n$ une série entière de rayon de convergence R_a .

La somme de la série entière $z\mapsto \sum_{n=0}^{+\infty}a_nz^n$ est continue sur son disque ouvert de convergence $D(0,R_a)$.

<u>Preuve</u>: Posons comme précédemment pour tout $n \in \mathbb{N}, u_n : z \mapsto a_n z^n$.

- Les fonctions $u_n: z \mapsto a_n z^n$ sont continues sur $D(0, R_a)$.
- Soit K un compact quelconque inclus dans $D(0, R_a)$. Remarquons que l'application :

$$\begin{cases} K \to \mathbb{R}^+ \\ z \mapsto |z| \end{cases}$$

est continue sur le compact. Elle est donc majorée et atteint sa borne supérieure. Notons : $r_K = \sup\{|z| \mid z \in K\}$. Il existe $z_K \in K$ tel que $r_K = |z_K| < R_a$. Ainsi pour tout $z \in K$, $|z| \leq r_K = |z_K|$. Ainsi $K \subset \overline{D(0, r_K)} \subset D(0, R_a)$.

Or la série de fonctions $\sum a_n z^n$ converge uniformément sur tout disque fermé inclus dans $D(0,R_a)$, en particulier dans $\overline{D(0,r_K)}$ et

Le théorème de continuité sous le signe somme assure que la somme de la série entière $z \mapsto \sum_{n=0}^{+\infty} a_n z^n$ est continue sur $D(0, R_a)$.

8.4.2 Étude de la somme d'une série entière de variable réelle

On étudie dans ce paragraphe les séries entières $\sum a_n x^n$ où x est un réel. Résumons les propriétés rencontrées précédemment :

Théorème 24

Soit $\sum a_n z^n$ une série entière de rayon de convergence R_a .

1. L'ensemble des réels x tels que la série numérique $\sum a_n x^n$ soit convergente est un intervalle I_a vérifiant :

$$]-R_a,R_a[\subset I_a\subset [-R_a,R_a].$$

- 2. La série de fonctions $\sum a_n x^n$ converge normalement, donc uniformément sur tout segment inclus dans]-R,R[.
- 3. La somme de la série entière $x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est continue sur $]-R_a, R_a[$.

 $\underline{Remarque}$: La fonction somme est alors définie sur] -R, R[ou] -R, R] ou [-R, R[ou [-R, R]. Si le théorème précédent ssure la continuité de la somme sur] -R, R[, il ne dit rien de l'éventuelle continuité en R et en -R en cas de convergence.

Remarquons que si la série $\sum a_n R^n$ converge absolument alors $\sum a_n x^n$ converge normalement sur [-R,R] puisque :

$$\forall x \in [-R, R], \quad |a_n x^n| \le |a_n| R^n$$

Dans ce cas, la somme $x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est continue sur [-R, R].

Le résultat reste vrai même en cas de semi-convergence comme l'exprime le théorème de convergence radiale d'Abel ci-dessous (dont la preuve est hors programme).

Théorème 25 (Théorème de convergence radiale d'Abel)

Soit $\sum a_n x^n$ une série entière de rayon de convergence $R \in \mathbb{R}_+^*$. On suppose que $\sum a_n R^n$ converge. Alors :

$$\sum_{n=0}^{+\infty} a_n x^n \underset{x \to R^-}{\longrightarrow} \sum_{n=0}^{+\infty} a_n R^n$$

Remarque : Le résultat est aussi vrai en -R.

Corollaire 26

La somme d'une série entière de la variable réelle est continue sur l'intervalle de convergence.

8.4.3 Primitive de la somme d'une série entière de variable réelle

Lemme 27

Soit $\sum a_n z^n$ une série entière de rayon de convergence R_a . Soit $p \in \mathbb{N}$.

- 1. Les séries entières $\sum a_{n+p}z^n$ et $\sum a_nz^n$ ont même rayon de convergence.
- 2. Les séries entières $\sum a_n z^{n+p}$ et $\sum a_n z^n$ ont même rayon de convergence.

\underline{Preuve} :

1. Remarquons que $\sum_{n\geqslant 0} a_{n+p} z^n = \sum_{n\geqslant p} a_n z^{n-p}$. Soit $r\in \mathbb{R}_+$.

La suite $(a_n r^{n-p})_{n \geqslant p}$ est bornée si, et seulement si, la suite $(a_n r^n)$ l'est aussi. On a égalité des ensembles :

$$\left\{r\in\mathbb{R}_+\mid (a_nr^{n-p})_{n\geqslant p}\text{ est born\'ee}\right\}=\left\{r\in\mathbb{R}_+\mid (a_nr^n)_{n\geqslant p}\text{ est born\'ee}\right\}.$$

Les bornes supérieures de $[0, +\infty]$ de ces ensembles coïncident. Par conséquent, les séries entières $\sum a_{n+p}z^n$ et $\sum a_nz^n$ ont même rayon de convergence.

2. Soit $r \in \mathbb{R}_+$. La suite $(a_n r^{n+p})_{n \geqslant p}$ est bornée si, et seulement si, la suite $(a_n r^n)$ l'est aussi. On a égalité des ensembles :

$$\left\{r\in\mathbb{R}_+\mid (a_nr^{n+p})_{n\geqslant p}\text{ est born\'ee}\right\}=\left\{r\in\mathbb{R}_+\mid (a_nr^n)_{n\geqslant p}\text{ est born\'ee}\right\}.$$

Les bornes supérieures de $[0, +\infty]$ de ces ensembles coïncident. Par conséquent, les séries entières $\sum a_n z^{n+p}$ et $\sum a_n z^n$ ont même rayon de convergence.

Définition 28

Soit $\sum a_n x^n$ une série entière. On appelle série entière primitive de la série entière $\sum_{n\geqslant 0} a_n x^n$ la série entière

$$\sum_{n \ge 0} \frac{a_n}{n+1} x^{n+1}$$

Ces deux séries entières ont même rayon de convergence.

 \underline{Preuve} : D'après le lemme précédent, la série entière $\sum \frac{a_n}{n+1} x^{n+1}$ a même rayon de convergence que la série entière $\sum \frac{a_n}{n+1} x^n$.

La suite $\left(\frac{a_n}{n+1}\right)$ diffèrent de la suite (a_n) à la multiplication près par une fraction rationnelle en n non nulle. D'après la proposition 16, les séries entières $\sum a_n x^n$ et $\sum \frac{a_n}{n+1} x^{n+1}$ ont même rayon de convergence.

Théorème 29

Soit $\sum a_n x^n$ une série entière de rayon de convergence $R_a > 0$.

La somme de la série entière primitive

$$x \mapsto \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$

est l'unique primitive sur $]R_a, R_a[$ s'annulant en 0 de $x \mapsto \sum_{n=0}^{+\infty} a_n x^n$.

 \underline{Preuve} : Rappelons que la fonction $S_a: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est continue sur $]-R_a, R_a[$. La primitive de S_a sur $]-R_a, R_a[$ s'annulant en 0 est :

$$x \mapsto \int_0^x \sum_{n=0}^{+\infty} a_n t^n dt.$$

Or la série de fonctions $t \mapsto \sum_{n=0}^{+\infty} a_n t^n$ converge uniformément sur [0,x] ou [x,0] (suivant que x soit positif ou négatif). Le théorème d'interversion série intégrale assure que :

$$\forall x \in]-R_a, R_a[, \quad \int_0^x \sum_{n=0}^{+\infty} a_n t^n dt = \sum_{n=0}^{+\infty} a_n \int_0^x t^n dt = \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1}$$

Dérivée de la somme d'une série entière de variable réelle

Définition 30

Soit $\sum a_n x^n$ une série entière. On appelle série entière dérivée de la série entière $\sum a_n x^n$ la série entière

$$\sum_{n\geqslant 1} n a_n x^{n-1} = \sum_{n\geqslant 0} (n+1) a_{n+1} x^n.$$

Ces deux séries entières ont même rayon de convergence.

<u>Preuve</u>: D'après le lemme 27, la série entière $\sum (n+1)a_{n+1}x^n$ a même rayon de convergence que la série entière $\sum na_nx^n$

La suite (na_n) diffèrent de la suite (a_n) à la multiplication près par un polynôme non nul en n. D'après la proposition 16, les séries entières $\sum a_n x^n$ et $\sum (n+1)a_{n+1}x^n$ ont même rayon de convergence.

Théorème 31

Soit $\sum a_n x^n$ une série entière de rayon de convergence $R_a > 0$. On note :

$$S_a: \left\{ \begin{array}{ccc}]-R_a, R_a[& \to & \mathbb{C} \\ & x & \mapsto & \sum_{n=0}^{+\infty} a_n x^n \end{array} \right.$$

La fonction S_a est de classe C^1 sur $]-R_a, R_a[$ et :

$$\forall x \in]-R_a, R_a[, \quad S'_a(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n.$$

$$\forall x \in]-R_a, R_a[, \quad u_n'(x) = \begin{cases} a_n x^{n-1} & \text{si } n \in \mathbb{N}^* \\ 0 & \text{sinon} \end{cases}$$

- La série de fonctions $\sum u_n$ converge simplement vers S_a sur $]-R_a,R_a[$.
- La série de fonctions $\sum u'_n$ converge uniformément sur tout segment inclus dans] $-R_a, R_a$ [en tant que série entière dérivée de rayon de convergence R_a

Le théorème de classe \mathcal{C}^1 sous le signe somme assure que S_a est de classe \mathcal{C}^1 sur $]-R_a,R_a[$ et :

$$\forall x \in]-R_a, R_a[, S_a'(x) = \sum_{n=0}^{+\infty} u_n'(x) = \sum_{n=1}^{+\infty} na_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1)a_{n+1}x^n.$$

Théorème 32

Soit $\sum a_n x^n$ une série entière de rayon de convergence $R_a > 0$. On note :

$$S_a: \left\{ \begin{array}{ccc}]-R_a,R_a[& \to & \mathbb{C} \\ & x & \mapsto & \displaystyle\sum_{n=0}^{+\infty} a_n x^n \end{array} \right.$$

La fonction S_a est de classe \mathcal{C}^{∞} sur $]-R_a,R_a[$ et :

$$\forall p \in \mathbb{N}, \quad \forall x \in]-R_a, R_a[, \quad S_a^{(p)}(x) = \sum_{n=p}^{+\infty} n(n-1) \dots (n-p+1) a_n x^{n-p} = \sum_{n=0}^{+\infty} (n+p)(n+p-1) \dots (n+1) a_{n+p} x^{n-p} = \sum_{n=0}^{+\infty} (n+p)(n+p-1) \dots (n+1) a_{n+p} x^{n-p} = \sum_{n=0}^{+\infty} (n+p)(n+p-1) \dots (n+p+1) a_n x^{n-p} = \sum_{n=0}^{+\infty} (n+p)(n+p-1) \dots (n+p+p+1) a_n x^{n-p} = \sum_{n=0}^{+\infty} (n+p)(n+p-1) \dots (n+p+p+1) a_n x^{n-p} = \sum_{n=0}^{+\infty} (n+p)(n+p-1) \dots (n+p+p+1) a_n x^{n-p} = \sum_{n=0}^{+\infty} (n+p)(n+p+1) a_n x^{n-p} = \sum_{n=0}^{+\infty} (n+p)(n+p+1) a_n x^{n-p} = \sum_{n=0}^{+$$

Corollaire 33

Soit $\sum a_n x^n$ une série entière de rayon de convergence $R_a > 0$. On note :

$$S_a: \left\{ \begin{array}{ccc}]-R_a, R_a[& \to & \mathbb{C} \\ & x & \mapsto & \displaystyle\sum_{n=0}^{+\infty} a_n x^n \end{array} \right.$$

Alors:

$$\forall n \in \mathbb{N}, \quad a_n = \frac{S_a^{(n)}(0)}{n!}$$

Ainsi:

$$\forall x \in]-R_a, R_a[, S_a(x) = \sum_{n=0}^{+\infty} \frac{S^{(n)}(0)}{n!} x^n.$$

<u>Preuve</u>: Comme la fonction S_a est de classe \mathcal{C}^{∞} sur $]-R_a,R_a[$, on a:

$$\forall x \in]-R_a, R_a[, S_a^{(p)}(x) = \sum_{n=0}^{+\infty} (n+p)(n+p-1)\dots(n+1)a_{n+p}x^n = \sum_{n=0}^{+\infty} \frac{(n+p)!}{n!}a_{n+p}x^n$$

En évaluant cette égalité en x=0, on obtient :

$$\forall p \in \mathbb{N}, \quad S_a^p(0) = p! a_p$$

Ce qui revient à :

$$\forall p \in \mathbb{N}, \quad a_p = \frac{S_a^{(p)}(0)}{p!}$$

En utilisant l'expression de S_a , on en déduit que :

$$\forall x \in]-R_a, R_a[, S_a(x) = \sum_{n=0}^{+\infty} \frac{S^{(n)}(0)}{n!} x^n.$$

 ${\bf Corollaire~34}~({\bf Unicit\'e~du~d\'eveloppement~en~s\'erie~enti\`ere})$

Soit $\sum a_n z^n$ et $\sum b_n z^n$ des séries entières de rayon de convergence respectifs $R_a > 0$ et $R_b > 0$. S'il existe un voisinage de 0 sur lequel :

$$\sum_{n=0}^{+\infty}a_nx^n=\sum_{n=0}^{+\infty}b_nx^n$$

alors:

$$\forall n \in \mathbb{N}, \quad a_n = b_n.$$

<u>Preuve</u>: Notons S_a et S_b les sommes respectives des séries entières $\sum a_n z^n$ et $\sum b_n z^n$. Supposons qu'il existe un voisinage de 0 de la forme $]-\eta,\eta[$ tel que:

$$\forall x \in]-\eta, \eta[, \quad S_a(x) = S_b(x).$$

Quitte à changer η , on peut supposer que $\eta < \min(R_a, R_b)$. Les fonctions S_a et S_b sont donc de classe \mathcal{C}^{∞} sur $]-\eta, \eta[$. Par conséquent :

$$\forall p \in \mathbb{N}, \quad \forall x \in]-\eta, \eta[, \quad S_a^{(p)}(x) = S_b^{(p)}(x).$$

En particulier:

$$\forall p \in \mathbb{N}, \quad \frac{S_a^{(p)}(0)}{p!} = \frac{S_b^{(p)}(0)}{p!}.$$

Le corollaire précédent assure que :

$$\forall p \in \mathbb{N}, \quad a_p = b_p.$$

8.5 Développements en série entière usuels

Théorème 35

1. Pour tout
$$z \in \mathbb{C}$$
, $\exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$

2. Pour tout
$$x \in \mathbb{R}$$
, $\sin(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$.

3. Pour tout
$$x \in \mathbb{R}$$
, $\cos(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} x^{2n}$

4. Pour tout
$$x \in \mathbb{R}$$
, $sh(x) = \sum_{n=0}^{+\infty} \frac{1}{(2n+1)!} x^{2n+1}$.

5. Pour tout
$$x \in \mathbb{R}$$
, $ch(x) = \sum_{n=0}^{+\infty} \frac{1}{(2n)!} x^{2n}$

Théorème 36

1. Pour tout
$$z \in \mathbb{C}$$
 avec $|z| < 1$, $\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n$.

2. Pour tout
$$x \in]-1,1]$$
, $\ln(1+x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} x^{n+1} = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} x^n$.

3. Pour tout
$$x \in]-1,1]$$
, $\arctan(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$.

Remarque:

- 1. Pour les fonctions ln et arctan l'intervalle est fermé en 1.
- 2. Le développement en série entière de arctan n'est pas valable sur \mathbb{R} , bien que la fonction arctan soit de classe \mathcal{C}^{∞} sur \mathbb{R} .

Théorème 37

Soit $\alpha \in \mathbb{R} - \mathbb{N}$,

$$\forall x \in]-1,1[, (1+x)^{\alpha} = \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n.$$

<u>Exercice E10</u>: Déterminer le rayon de convergence et la somme de $f(x) = \sum_{n=0}^{+\infty} \cos\left(n\frac{\pi}{2}\right) x^n$.

Exercice C11 : [CCINP]

- 1. On considère la série entière $\sum_{k\in\mathbb{N}^*} \frac{(-1)^{k+1}}{(2k+1)(2k-1)} x^{2k+1}$. Donner son rayon de convergence R. On note f(x) la somme.
- 2. Donner une expression simple de f' et de f.
- 3. Que peut-on dire de la convergence sur [-R, R]?
- 4. Calcular $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{4n^2 1}.$

Exercice E12:

Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^{\frac{\pi}{4}} \tan^n t \, dt$.

- 1. Déterminer la limite de la suite (a_n) .
- 2. Quel est le sens de variation de (a_n) ?
- 3. Déterminer une relation simple entre a_n et a_{n+2} . En déduire un équivalent de (a_n) .
- 4. On pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$. Déterminer le rayon de convergence R de cette série entière.
- 5. Déterminer f(x) pour $x \in]-R, R[$.

$\underline{Exercice\ C13}:[CCINP]$

On note f(x) la somme de la série entière $\sum_{n \in \mathbb{N}^*} \sin\left(\frac{1}{\sqrt{n}}\right) x^n$.

- 1. Déterminer le rayon de convergence R de cette série entière.
- 2. Y a-t-il convergence en R et -R?
- 3. Déterminer $\lim_{x\to 1^-} f(x)$.
- 4. Montrer que $\lim_{x \to 1^{-}} (1 x) f(x) = 0$.

Exercice C14: [CCINP]

Soit θ un réel. Pour $x \in \mathbb{R}$, on note sous réserve de convergence $f(x) = \sum_{n=0}^{+\infty} \frac{\cos(n\theta) + n\sin(n\theta)}{n!} x^n$.

- 1. Trouver le rayon de convergence de cette série entière.
- 2. Exprimer f(x) à l'aide de fonctions usuelles.

<u>Exercice E15</u>: Pour x réel, on pose $f(x) = \sum_{n=1}^{+\infty} \frac{x^n}{\sqrt{n}}$

- 1. Déterminer le rayon de convergence R de la série entière définissant f.
- 2. Étudier la convergence de la série entière en 1 et en -1.
- 3. Établir la continuité de f en -1.
- 4. Déterminer la limite de f en 1.

8.6 Fonctions développables en séries entières

Définition 38

Soit I un intervalle de $\mathbb R$ contenant 0 en son intérieur. Soit $r \in]0, +\infty]$ tel que $]-r, r[\subset I]$.

On dit qu'une fonction $f: I \to \mathbb{C}$ est développable en série entière sur]-r, r[si, et seulement si, il existe une série entière $\sum a_n x^n$ de rayon de convergence $R_a \geqslant r$ telle que :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Définition 39

Soit r > 0. Soit \mathcal{E} un sous-ensemble de \mathbb{C} contenant D(0, r).

On dit qu'une fonction $f: \mathcal{E} \to \mathbb{C}$ est développable en série entière sur D(0, r) si, et seulement si, il existe une série entière $\sum a_n x^n$ de rayon de convergence $R_a \geqslant r$ telle que :

$$\forall x \in D(0,r), \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Exemples:

1. La fonction $z\mapsto \exp(z)$ est développable en série entière sur $\mathbb C$ et

$$\forall z \in \mathbb{C}, \quad \exp(z) = \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$

2. La fonction $z\mapsto \frac{1}{1-z}$ est développable en série entière sur D(0,1) et

$$\forall z \in D(0,1), \quad \frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n$$

Définition 40

Soit I un intervalle de \mathbb{R} contenant 0 en son intérieur.

On dit qu'une fonction $f: I \to \mathbb{C}$ est développable en série entière en 0 si, et seulement si, il existe r > 0 tel que f soit développable en série entière sur]-r,r[.

8.6.1 Opérations sur les fonctions développables en série entière

Théorème 41

Soit I un intervalle de \mathbb{R} contenant 0 en son intérieur. Soit $r \in]0, +\infty]$ tel que $]-r, r[\subset I]$.

Soit $f: I \to \mathbb{C}$ et $g: I \to \mathbb{C}$ des fonctions développables en série entière sur]-r, r[. Soit $\lambda \in \mathbb{C}$.

Alors les fonctions λf , f + g et $f \times g$ sont aussi développables en série entière sur]-r,r[.

 \underline{Preuve} : Par hypothèses, il existe des séries entières $\sum a_n x^n$ et $\sum b_n x^n$ de rayons de convergence notés respectivement R_a et R_b vérifiant $R_a > r$ et $R_b > r$ telles que :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n \quad \text{ et } \quad g(x) = \sum_{n=0}^{+\infty} b_n x^n.$$

Remarquons que:

$$\forall x \in]-r, r[, \quad (\lambda f)(x) = \lambda f(x) = \lambda \sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} \lambda a_n x^n.$$

La fonction λf est s'écrit sur]-r,r[comme la somme d'une série entière, elle est donc développable en série entière sur]-r,r[. Remarquons aussi que :

$$\forall x \in]-r, r[, \quad (f+g)(x) = f(x) + g(x) = \sum_{n=0}^{+\infty} a_n x^n + \sum_{n=0}^{+\infty} b_n x^n = \sum_{n=0}^{+\infty} (a_n + b_n) x^n.$$

La fonction f + g est ainsi s'écrit sur] - r, r[comme la somme d'une série entière, elle est donc développable en série entière sur] - r, r[. En utilisant un produit de Cauchy de séries entières, on a :

$$\forall x \in]-r, r[, \quad (f \times g)(x) = f(x)g(x) = \left(\sum_{n=0}^{+\infty} a_n x^n\right) \left(\sum_{n=0}^{+\infty} b_n x^n\right) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right) x^n.$$

La fonction $f \times g$ est ainsi s'écrit sur] -r, r[comme la somme d'une série entière, elle est donc développable en série entière sur] -r, r[.

Exemple: Les fonctions $x \mapsto \exp(x)$ et $x \mapsto \exp(-x)$ sont toutes deux développables en série entière sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, \quad \exp(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!} \quad \text{ et } \quad \exp(-x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^n}{n!}.$$

On en déduit que les fonctions chet sh sont toutes deux aussi développables en série entière sur $\mathbb R$ et :

$$\forall x \in \mathbb{R}, \quad \begin{cases} \mathsf{ch}(x) = \frac{e^x + e^{-x}}{2} = \frac{1}{2} \left[\sum_{n=0}^{+\infty} \frac{x^n}{n!} + \sum_{n=0}^{+\infty} (-1)^n \frac{x^n}{n!} \right] = \sum_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} \\ \\ \mathsf{sh}(x) = \frac{e^x - e^{-x}}{2} = \frac{1}{2} \left[\sum_{n=0}^{+\infty} \frac{x^n}{n!} - \sum_{n=0}^{+\infty} (-1)^n \frac{x^n}{n!} \right] = \sum_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!} \end{cases}$$

Théorème 42

Soit I un intervalle de $\mathbb R$ contenant 0 en son intérieur. Soit $r \in]0, +\infty]$ tel que $]-r, r[\subset I$. Soit $f: I \to \mathbb C$ une fonction développable en série entière sur]-r, r[.

Alors les fonctions \overline{f} , Re(f) et Im(g) sont aussi développables en série entière sur]-r,r[.

<u>Preuve</u>: Par hypothèse, il existe une série entière $\sum a_n x^n$ telle que :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

On en déduit que :

$$\forall x \in]-r,r[, \quad \begin{cases} \overline{f}(x) = \overline{f(x)} = \sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} \overline{a_n} x^n. \\ \operatorname{Im}(f)(x) = \operatorname{Im}(f(x)) = \operatorname{Im}\left[\sum_{n=0}^{+\infty} a_n x^n\right] = \sum_{n=0}^{+\infty} \operatorname{Im}(a_n) x^n \\ \operatorname{Re}(f)(x) = \operatorname{Re}(f(x)) = \operatorname{Re}\left[\sum_{n=0}^{+\infty} a_n x^n\right] = \sum_{n=0}^{+\infty} \operatorname{Re}(a_n) x^n \end{cases}$$

Les fonctions \overline{f} , $\mathsf{Im}(f)$ et $\mathsf{Re}(f)$ s'écrivent sur]-r,r[comme somme de série entière. On en déduit qu'elles sont développables en série entière sur]-r,r[.

Exemple: Rappelons que $x\mapsto e^{ix}$ est développable en série entière sur $\mathbb R$ et :

$$\forall x \in \mathbb{R}, \quad e^{ix} = \sum_{n=0}^{+\infty} i^n \frac{x^n}{n!}.$$

On en déduit que les fonctions cos et sin sont développables en série entière sur $\mathbb R$ et :

$$\forall x \in \mathbb{R}, \quad \begin{cases} \cos(x) = \operatorname{Re}(e^{ix}) = \operatorname{Re}\left[\sum_{n=0}^{+\infty} i^n \frac{x^n}{n!}\right] = \sum_{n=0}^{+\infty} \operatorname{Re}(i^n) \frac{x^n}{n!} = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n}}{(2n)!} \\ \sin(x) = \operatorname{Im}(e^{ix}) = \operatorname{Im}\left[\sum_{n=0}^{+\infty} i^n \frac{x^n}{n!}\right] = \sum_{n=0}^{+\infty} \operatorname{Im}(i^n) \frac{x^n}{n!} = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \end{cases}$$

Théorème 43

Soit I un intervalle de \mathbb{R} contenant 0 en son intérieur. Soit $r \in]0, +\infty]$ tel que $]-r, r[\subset I$. Soit $f: I \to \mathbb{C}$ une fonction développable en série entière sur]-r, r[.

Alors les dérivées successives de f sont aussi développables en série entière sur]-r,r[.

 $\underline{\textit{Preuve}}$: Par hypothèse, il existe une série entière $\sum a_n x^n$ telle que :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

On sait que f est de classe \mathcal{C}^{∞} sur] -r, r[et :

$$\forall p \in \mathbb{N}, \quad \forall x \in]-r, r[, \quad f^{(p)}(x) = \sum_{n=p}^{+\infty} n(n-1) \dots (n-p+1) a_n x^{n-p} = \sum_{n=p}^{+\infty} \frac{n!}{(n-p)!} x^{n-p}.$$

Les dérivées successives de f s'écrivent donc comme somme d'une série entière sur]-r,r[, elles sont donc développables en série entière sur]-r,r[.

<u>Exemple</u>: Rappelons que la fonction $x \mapsto \frac{1}{1-x}$ est développable en série entière sur]-1,1[et que :

$$\forall x \in]-1,1[, f(x) = \sum_{n=0}^{+\infty} x^n$$

$$\forall x \in]-1,1[, f^{(p)}(x) = \frac{p!}{(1-x)^{p+1}}$$

D'après le théorème précédent, on en déduit que :

$$\forall x \in]-1,1[, \quad \frac{p!}{(1-x)^{p+1}} = \sum_{n=p}^{+\infty} \frac{n!}{(n-p)!} x^{n-p} = \sum_{n=0}^{+\infty} \frac{(n+p)!}{n!} x^n$$

En particulier,

$$\forall x \in]-1,1[, \frac{1}{(1-x)^2} = \sum_{n=0}^{+\infty} (n+1)x^n.$$

Théorème 44 (Intégration d'une fonction développable en série entière)

Soit I un intervalle de $\mathbb R$ contenant 0 en son intérieur. Soit $r \in]0, +\infty]$ tel que $]-r, r[\subset I.$

Soit $f: I \to \mathbb{C}$ une fonction développable en série entière sur]-r, r[, il existe ainsi une série entière $\sum a_n x^n$ telle que :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Soit F une primitive de f sur I. Alors F est aussi développable en série entière sur]-r,r[et :

$$\forall x \in]-r, r[, F(x) = F(0) + \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$$

<u>Preuve</u>: Rappelons que $G: x \mapsto \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$ la somme de la série entière primitive de la série entière $x \mapsto \sum_{n=0}^{+\infty} a_n x^n$. La fonction G est l'unique primitive sur]-r, r[de f s'annulant en 0.

Ainsi F et G sont égales à une constante prés. Il existe $\lambda \in \mathbb{C}$ tel que :

$$F = G + \lambda$$

En évaluant cette égalité en 0, on obtient :

$$F(0) = G(0) + \lambda = 0 + \lambda = \lambda.$$

En conclusion,

$$\forall x \in]-r, r[, F(x) = F(0) + \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}.$$

La fonction F est donc développable en série entière sur]-r,r[.

Exemple: Rappelons que la fonction $f: x \mapsto \ln(1+x)$ est définie et dérivable sur $]1, +\infty[$ et

$$\forall x \in]1, +\infty[, \quad f'(x) = \frac{1}{1+x}.$$

Or rappelons que la fonction $x \mapsto \frac{1}{1+x}$ est développable en série entière sur]-1,1[et :

$$\forall x \in]-1,1[, \frac{1}{1+x} = \sum_{n=0}^{+\infty} (-1)^n x^n.$$

On en déduit que :

$$\forall x \in]-1,1[, \quad \ln(1+x) = \ln(1) + \sum_{n=0}^{+\infty} \frac{(-1)^n}{n+1} x^{n+1} = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^n.$$

Exemple: Rappelons que la fonction Arctan est dérivable sur $\mathbb R$ et

$$\forall x \in \mathbb{R}, \quad (\mathsf{Arctan})'(x) = \frac{1}{1+x^2}.$$

Or rappelons que la fonction $x \mapsto \frac{1}{1+x^2}$ est développable en série entière sur]-1,1[et :

$$\forall x \in]-1,1[, \frac{1}{1+x^2} = \sum_{n=0}^{+\infty} (-1)^n x^{2n}.$$

On en déduit que :

$$\forall x \in]-1,1[, \quad \mathsf{Arctan}(x) = \mathsf{Arctan}(0) + \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2n+1} x^{2n+1}.$$

8.6.2 Série de Taylor

Définition 45

Soit I un intervalle de $\mathbb R$ contenant 0 en son intérieur. Soit $f:I\to\mathbb C$ une fonction de classe $\mathcal C^\infty$ sur I. La série de Taylor de f est la série entière $\sum \frac{f^{(n)}(0)}{n!}x^n$.

Théorème 46

Soit I un intervalle de \mathbb{R} contenant 0 en son intérieur. Soit $r \in]0, +\infty]$ tel que $]-r, r[\subset I]$. Soit $f: I \to \mathbb{C}$ une fonction développable en série entière sur]-r, r[. Alors :

- 1. La fonction f est de classe \mathcal{C}^{∞} sur]-r,r[.
- 2. La fonction f coïncide sur]-r,r[avec la somme de sa série de Taylor :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

 \underline{Preuve} : Par hypothèses, il existe une série entière $\sum a_n x^n$ de rayon de convergence $R_a \geqslant r$ tel que :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

- 1. Notons $S_a: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$. On sait que la fonction S_a est de classe \mathcal{C}^{∞} sur $]-R_a, R_a[$, donc sur]-r, r[. Comme f et S_a coïncident sur]-r, r[. On en déduit que f est aussi de classe \mathcal{C}^{∞} sur]-r, r[.
- 2. D'autre part :

$$\forall n \in \mathbb{N}, \quad a_n = \frac{S_a^{(n)}(0)}{n!} = \frac{f^{(n)}(0)}{n!}$$

Par conséquent :

$$\forall x \in]-r, r[, \quad f(x) = \sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} \frac{f^{(n)}(0)}{n!} x^n.$$

8.6.3 Application à l'étude de la régularité d'une fonction

Meth 47

Pour montrer qu'une fonction f est de classe C^{∞} sur]-r,r[avec r>0. Il SUFFIT de montrer que f est développable en série entière sur]-r,r[.

Exemple: Considérons la fonction:

$$\operatorname{sinc}: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ & & \left\{ \frac{\sin(x)}{x} & & \operatorname{si} \ x \in \mathbb{R}^* \\ 1 & & \operatorname{si} \ x = 0 \end{array} \right. \right.$$

En utilisant le développement en série entière de sin, remarquons que pour tout $x \in \mathbb{R}^*$:

$$\operatorname{sinc}(x) = \frac{1}{x} \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} x^{2n}.$$

Cette égalité reste valable en 0. La fonction sinc est donc développable en série entière sur R. En conclusion,

La fonction sinc est de classe \mathcal{C}^{∞} sur \mathbb{R} .

Exercice E16:

- 1. Montrer que la fonction $f: x \mapsto \frac{e^x 1}{x}$ peut se prolonger en une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} .
- 2. En utilisant le fait que sinc est de classe \mathcal{C}^{∞} sur \mathbb{R} , en déduire que la fonction :

$$x \mapsto \frac{\sin(x)}{e^x - 1}$$

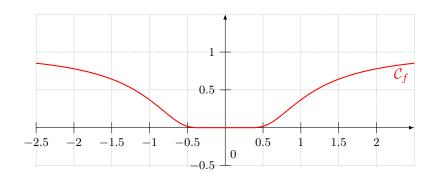
peut se prolonger en une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} .

Théorème 48 (Fonction de classe \mathcal{C}^{∞} non développable en série entière)

La fonction

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ & & \\ x & \mapsto & \begin{cases} e^{-\frac{1}{x^2}} & & \text{si } x \in \mathbb{R}^* \\ 0 & & \text{si } x = 0 \end{cases} \right.$$

est de classe \mathcal{C}^{∞} sur \mathbb{R} et POURTANT f n'est pas développable en série entière au voisinage de 0.



8.7 Séries entières et équations différentielles

8.7.1 Développement en série entière de $x \mapsto (1+x)^{\alpha}$

Théorème 49

Soit α un réel fixé. La fonction $(1+x)^{\alpha}$ est développable en série entière sur] -1,1[et :

$$(1+x)^{\alpha} = 1 + \sum_{n=1}^{+\infty} \left[\frac{1}{n!} \prod_{k=0}^{n-1} (\alpha - k) \right] x^n$$
$$= 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)}{n!} x^n.$$

 \underline{Preuve} : Posons pour tout $n \in \mathbb{N}$:

$$a_n = \begin{cases} 1 & \text{si } n = 0 \\ \frac{1}{n!} \prod_{k=0}^{n-1} (\alpha - k) & \text{si } n \in \mathbb{N}^* \end{cases}$$

de telle sorte que :

$$a_0 = 1$$
, $a_1 = \alpha$, $a_2 = \frac{\alpha(\alpha - 1)}{2}$, $a_{n+1} = \frac{\alpha(\alpha - 1) \dots (\alpha - n + 1)(\alpha - n)}{(n+1)!} = \frac{\alpha - n}{n+1}a_n$.

Déterminons le rayon de convergence R_a de la série entière $\sum a_n x^n$.

<u>Premier cas</u> : Si $\alpha \in \mathbb{N}$.

On remarque que pour tout $n \in [\alpha, +\infty[, a_n = 0.$

La série entière $\sum a_n x^n$ est en fait une fonction polynomiale. Le rayon de convergence cherché est donc $R_a = +\infty$.

<u>Deuxième cas</u> : Si $\alpha \notin \mathbb{N}$. On remarque que pour tout $n \in \mathbb{N}$, $a_n \neq 0$. Appliquons la règle de d'Alembert pour les séries numériques. Soit $r \in \mathbb{R}_+^*$. Pour tout $n \in \mathbb{N}$:

$$\frac{|a_{n+1}|r^{n+1}}{|a_n|r^n} = \left|\frac{\alpha - n}{n+1}\right| r \xrightarrow[n \to +\infty]{} r.$$

On en déduit que $R_a = 1$.

Dans le deux cas, la somme de la série entière : $S_a: x \mapsto \sum_{n=0}^{+\infty} a_n x^n$ est de classe \mathcal{C}^{∞} sur]-1,1[et pour tout $x \in]-1,1[$:

$$S'_a(x) = \sum_{n=1}^{+\infty} na_n x^{n-1} = \sum_{n=0}^{+\infty} (n+1)a_{n+1} x^n$$

Or pour tout $n \in \mathbb{N}$, $a_{n+1} = \frac{\alpha - n}{n+1} a_n$, ce qui revient à $(n+1)a_{n+1} = (\alpha - n)a_n$. Ainsi pour tout $x \in]-1,1[$:

$$S'_a(x) = \sum_{n=0}^{+\infty} (\alpha - n)a_n x^n = \alpha \sum_{n=0}^{+\infty} a_n x^n - \sum_{n=0}^{+\infty} n a_n x^n$$

$$= \alpha S_a(x) - \sum_{n=1}^{+\infty} n a_n x^n$$

$$= \alpha S_a(x) - x \sum_{n=1}^{+\infty} n a_n x^{n-1}$$

$$= \alpha S_a(x) - x S'_a(x)$$

$$(1+x)S'_a(x) = \alpha S_a(x).$$

La fonction S_a est donc solution sur] -1,1[de l'équation différentielle linéaire $(1-x)y'=\alpha y$ dont les solutions sont de la forme :

$$x \mapsto \lambda (1+x)^{\alpha}$$
.

Il existe $\lambda \in \mathbb{R}$ tel que :

$$\forall x \in]-1,1[, \quad S_a(x) = \lambda(1+x)^{\alpha}.$$

Or $S_a(0) = a_0 = 1$. Donc $\lambda = 1$. En conclusion,

$$\forall x \in]-1,1[, (1+x)^{\alpha} = S_a(x) = 1 + \sum_{n=1}^{+\infty} \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n.$$

Exemple: Si $\alpha \in \mathbb{N}$. Posons $p = \alpha \in \mathbb{N}$. Pour tout $x \in]-1,1[$:

$$(1+x)^p = 1 + \sum_{k=1}^{+\infty} \frac{p(p-1)\dots(p-k+1)}{k!} x^k = 1 + \sum_{k=1}^p \binom{p}{k} x^k = \sum_{k=0}^p \binom{p}{k} x^k.$$

Il s'agit en fait de la formule du binôme de Newton. L'égalité précédente est valable sur R.

 $\underline{\textit{Exemple}}: \text{Si } \alpha \in]\![-\infty, -1]\![$. En notant $\alpha = -p-1$ où $p \in \mathbb{N}$, on obtient pour tout $x \in]-1, 1[:$

$$\frac{1}{(1+x)^{p+1}} = (1+x)^{-p-1} = 1 + \sum_{n=1}^{+\infty} \left[\frac{1}{n!} \prod_{k=0}^{n-1} (-p-1-k) \right] x^n$$

$$= 1 + \sum_{n=1}^{+\infty} \left[\frac{1}{n!} (-1)^n \prod_{k=0}^{n-1} (p+k+1) \right] x^n$$

$$= 1 + \sum_{n=1}^{+\infty} \left[\frac{1}{n!} (-1)^n \frac{(n+p)!}{p!} \right] x^n$$

$$= 1 + \sum_{n=1}^{+\infty} (-1)^n \binom{n+p}{n} x^n$$

$$= \sum_{n=0}^{+\infty} (-1)^n \binom{n+p}{n} x^n$$

<u>Exemple</u>: Si $\alpha = -\frac{1}{2}$. Pour tout $x \in]-1,1[$:

$$\frac{1}{\sqrt{1+x}} = (1+x)^{-\frac{1}{2}} = 1 + \sum_{n=1}^{+\infty} \left[\frac{1}{n!} \prod_{k=0}^{n-1} (-\frac{1}{2} - k) \right] x^n$$

$$= 1 + \sum_{n=1}^{+\infty} \left[\frac{1}{n!} \prod_{k=0}^{n-1} \frac{-1 - 2k}{2} \right] x^n$$

$$= 1 + \sum_{n=1}^{+\infty} \left[\frac{1}{2^n n!} (-1)^n \prod_{k=0}^{n-1} (2k+1) \right] x^n$$

$$= 1 + \sum_{n=1}^{+\infty} \left[\frac{1}{2^n n!} (-1)^n \prod_{k=0}^{n-1} (2k+1) \prod_{k=1}^{n} \frac{2k}{n} \right] x^n$$

$$= 1 + \sum_{n=1}^{+\infty} \left[\frac{1}{2^n n!} (-1)^n \frac{(2n)!}{2^n n!} \right] x^n$$

$$= 1 + \sum_{n=1}^{+\infty} (-1)^n \frac{(2n)!}{2^{2n} (n!)^2} x^n$$

$$= \sum_{n=0}^{+\infty} (-1)^n \frac{(2n)!}{2^{2n} (n!)^2} x^n$$

$$= \left[\sum_{n=0}^{+\infty} \frac{(-1)^n}{2^{2n}} \binom{2n}{n} x^n \right]$$

8.7.2 Quelques exemples et exercices

 $\frac{Exemple}{\text{La fonction }f\text{ est définie et de classe }\mathcal{C}^{\infty}\text{ sur }]-1,1[}.$

Montrons que f est développable en série entière. Remarquons que Arcsin et $x \mapsto \frac{1}{\sqrt{1-x^2}}$ sont développables en série entière sur]-1,1[.

La fonction f qui est le produit de ces deux fonctions est donc aussi développable en série entière sur]-1,1[. Explicitons le développement en série entière de f en utilisant une équation différentielle linéaire. En dérivant f, on obtient :

$$\forall x \in]-1,1[, \quad f'(x) = \frac{1 + \frac{x}{\sqrt{1 - x^2}} \operatorname{Arcsin}(x)}{1 - x^2} = \frac{1}{1 - x^2} + \frac{x}{1 - x^2} f(x).$$

La fonction f est donc solution sur]-1,1[de l'équation différentielle :

$$y' = \frac{x}{1 - x^2}y + \frac{1}{1 - x^2} \iff (1 - x^2)y' = xy + 1$$
 (E).

Remarquons que la fonction f est impaire. Considérons le développement en série entière de f sur]-1,1[sous la forme :

$$f: x \mapsto \sum_{n=0}^{+\infty} a_n x^{2n+1}.$$

En dérivant cette somme de série entière, on obtient :

$$\forall x \in]-1,1[, \quad f'(x) = \sum_{n=0}^{+\infty} (2n+1)a_n x^{2n}.$$

Comme f vérifie l'équation différentielle (E). On a pour tout $x \in]-1,1[$,

$$(1-x^{2})f'(x) = xf(x) + 1 \iff (1-x^{2}) \sum_{n=0}^{+\infty} (2n+1)a_{n}x^{2n} = x \sum_{n=0}^{+\infty} a_{n}x^{2n+1} + 1$$

$$\iff \sum_{n=0}^{+\infty} (2n+1)a_{n}x^{2n} - \sum_{n=0}^{+\infty} (2n+1)a_{n}x^{2n+2} = \sum_{n=0}^{+\infty} a_{n}x^{2n+2} + 1$$

$$\iff \sum_{n=0}^{+\infty} (2n+1)a_{n}x^{2n} - \sum_{n=0}^{+\infty} (2n+2)a_{n}x^{2n+2} = 1$$

$$\iff a_{0} + \sum_{n=1}^{+\infty} (2n+1)a_{n}x^{2n} - \sum_{n=0}^{+\infty} (2n+2)a_{n}x^{2n+2} = 1$$

$$\iff a_{0} + \sum_{n=0}^{+\infty} (2n+3)a_{n+1}x^{2n+2} - \sum_{n=0}^{+\infty} (2n+2)a_{n}x^{2n+2} = 1$$

$$\iff a_{0} + \sum_{n=0}^{+\infty} [(2n+3)a_{n+1}x^{2n+2} - \sum_{n=0}^{+\infty} (2n+2)a_{n}]x^{2n+2} = 1$$

L'unicité des coefficients d'un développement en série entière assure que :

$$a_0 = 1$$
 et $\forall n \in \mathbb{N}^*, \quad a_{n+1} = \frac{2n+2}{2n+3}a_n.$

Donnons une expression de a_n en fonction de n. Pour tout $n \in \mathbb{N}$:

$$a_n = \frac{2n}{2n+1} \frac{2n-2}{2n-1} \dots \frac{2}{3} a_0 = \frac{\left[(2n)(2n-2) \dots 4 \times 2 \right]^2}{(2n+1)(2n)(2n-1) \dots 3 \times 2 \times 1}$$
$$= \frac{\left[2^n n! \right]^2}{(2n+1)!} = \frac{2^{2n} (n!)^2}{(2n+1)!}$$

En conclusion, le développement en série entière de f est :

$$\forall x \in]-1,1[, f(x) = \sum_{n=0}^{+\infty} \frac{2^{2n}(n!)^2}{(2n+1)!} x^{2n+1}.$$

<u>Exercice A17</u>: Justifier la convergence et déterminer la somme de la série $\sum_{n\in\mathbb{N}} \frac{(-1)^n}{2n+1}$.

Exercice E18:

On considère la série entière $\sum_{n \in \mathbb{N}} \frac{x^n}{\binom{2n}{n}}$ dont on note S(x) la somme.

- 1. Déterminer le rayon de convergence de cette série entière.
- 2. Montrer que S est solution sur son intervalle de convergence de l'équation différentielle

$$(\mathcal{E}): \quad x(x-4)y' + (x+2)y = 2$$

- 3. Résoudre l'équation homogène ($\varepsilon_{\rm H}$) associée à (\mathcal{E}) sur]0,4[.
- 4. Vérifier que $x \mapsto 2 \arctan\left(\sqrt{\frac{4-x}{x}}\right) 2\sqrt{\frac{4-x}{x}}$ est une primitive de $x \mapsto \frac{\sqrt{4-x}}{x\sqrt{x}}$ sur]0,4[.
- 5. En déduire S(x) pour $x \in]0, 4[$.
- 6. Calculer $\sigma = \sum_{n=0}^{\infty} \frac{1}{\binom{2n}{n}}$.

<u>Exercice C19</u>: [Mines-Télécom]

Soit α un réel strictement positif et $(a_n)_{n\in\mathbb{N}}$ la suite réelle vérifiant $a_0=1$ et :

$$\forall n \in \mathbb{N}, \quad a_{n+1} = \frac{2n+k}{n+1} a_n$$

- 1. Déterminer le rayon de convergence R de la série entière $\sum_{n=0}^{\infty} a_n x^n$.
- 2. On note f la somme de cette série entière. Montrer que f est solution sur -R, R d'une équation différentielle linéaire d'ordre 1.
- 3. En déduire f(x) en fonction de $x \in]-R, R[$.

Exercice E20:

1. Étudier la parité de

$$f: x \mapsto e^{x^2/2} \int_0^x e^{-t^2/2} dt$$

- 2. Montrer que f est solution d'une équation différentielle à déterminer.
- 3. Justifier que f est développable en série entière et donner ce développement.

$$\frac{Exercice\ C21}{\text{Soit, pour }n\in\mathbb{N}, a_n=\frac{n!}{1\cdot 3\cdots (2n+1)}}.$$

Déterminer le rayon de convergence R de la série entière $\sum a_n x^n$ et calculer pour tout $x \in]-R,R[$ la somme

33

$$S(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Exercice E22:

Soit
$$f(x) = \sum_{n=0}^{+\infty} (-1)^n \binom{2n}{n} \frac{1}{2n-1} x^n$$

1. Donner le rayon de convergence de f(x).

- 2. Montrer que : 2f = (1 + 4x)f'.
- 3. En déduire f.

$\underline{Exercice\ C23}$: [Centrale]

On pose $H_n = \sum_{k=1}^n \frac{1}{k}$ pour $n \in \mathbb{N}^*$. Déterminer le rayon de convergence et la somme de la série entière $\sum_{n \in \mathbb{N}^*}^{k=1} H_n x^n$.

Exercice C24: [Mines-Ponts] Si $n \ge 1$, soit I_n le nombre d'involutions de $\{1, \ldots, n\}$. On pose $I_0 = 1$.

- 1. Montrer, si $n \ge 2$, que : $I_n = I_{n-1} + (n-1)I_{n-2}$.
- 2. Montrer que $\sum_{n=0}^{+\infty} \frac{I_n}{n!} x^n$ converge si $x \in]-1,1$ [. Soit S(x) sa somme.
- 3. Montrer, pour $x \in]-1,1[$, que : S'(x) = (1+x)S(x).
- 4. En déduire une expression de S(x), puis une expression de I_n .

$\underline{Exercice\ C25}$: [Centrale]

- 1. Soit f une fonction C^{∞} sur un intervalle I =]-A, A [, (A fini ou non), telle que, pour tout $n \in \mathbb{N}$ et tout $x \in I$, on ait $f^{(n)}(x) \geq 0$. Montrer que f est développable en série entière dans I.
- 2. Lorsque f est paire ou impaire, montrer qu'il en est de même si, pour tout $n \in \mathbb{N}$ et tout $x \in [0, A[$, on a $f^{(n)}(x) \ge 0$.
- 3. Montrer que $x \mapsto \tan x$ est développable en série entière de rayon $\pi/2$.

 $\underline{Exercice\ E26}$: Soit (a_n) une suite décroissante de réels strictement positifs. On pose :

$$f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

- 1. Montrer que : f continue sur $[-1, 1 \iff \lim_{n \to +\infty} a_n = 0$.
- 2. Montrer que $\,:f$ continue sur $[-1,1] \Longleftrightarrow \sum a_n$ converge.
- 3. Calculer $\lim_{\substack{x \to 1 \\ x < 1}} (1-x)f(x)$.

Exercice C27: [Mines-Ponts]

Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ la somme d'une série entière de rayon de convergence infini.

- 1. Calculer $A_n(r) = \frac{1}{2\pi} \int_0^{2\pi} f\left(re^{it}\right) e^{-int} dt$.
- 2. Montrer que si f est bornée sur \mathbb{C} , alors elle est constante.
- 3. La conclusion subsiste-t-elle si f est bornée sur $\mathbb R$?