POLYNOME MINIMAL

Dans toute cette partie, on note Π_a le polynome minimal de a

Exercice 1. E est un \mathbb{K} -espace vectoriel et f un projecteur distinct de l'identité et de l'application nulle.

- 1. Montrer que : $\pi_f = X(X-1)$
- 2. Retrouver le résultat classique : $E = \ker(f) \oplus \operatorname{Im}(f)$ et f est le projecteur sur $\operatorname{Im}(f)$ parallèlement à $\ker(f)$.

Exercice 2. 1. Déterminer le polynôme minimal de l'endomorphisme de dérivation dans $\mathbb{R}_n[X]$

2. Montrer que l'endomorphisme de dérivation dans $\mathbb{R}[X]$ n'a pas de polynôme minimal.

Exercice 3. Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- 1. Montrer que : $A \in Gl_n(\mathbb{K}) \iff \Pi_A(0) \neq 0$
- 2. Montrer que si $A \in Gl_n(\mathbb{K})$, alors $A^{-1} \in \mathbb{K}[A]$

Exercice 4. Soit $A = \begin{pmatrix} 3 & -1 & -1 \\ -3 & 5 & 3 \\ 2 & -2 & 0 \end{pmatrix}$.

- 1. Calculer A^2 puis π_A et vérifier que son degré vaut 2.
- 2. En utilisant la division euclidienne de X^n par π_A , exprimer A^n en fonction de I_3 et de A.
- 3. Montrer que $\exp(A)$ appartient à $\mathbb{K}[A]$ et l'exprimer en fonction de I_3 et de A
- 4. Montrer que A est inversible et exprimer A^{-1} en fonction de A et de I_3

Exercice 5. Soit $A = \begin{pmatrix} -1 & 1 & -1 \\ 0 & 2 & 0 \\ -1 & 1 & -1 \end{pmatrix}$.

Calculer A^3 puis déterminer π_A . En déduire A^n et $\exp(A)$ sous forme de polynômes en A

Exercice 6. Soit $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -3 & 3 \end{pmatrix}$.

- 1. Calculer les puissances de $B=A-I_3$. En déduire π_B puis π_A
- 2. Calculer les puissances de A puis $\exp(A)$ en fonction de I_3 , B et B^2 .

Exercice 7. Soient a_1, a_2, \ldots, a_n , n scalaires distincts et $P = (X - a_1) \ldots (X - a_n)$. Soit E un \mathbb{K} - espace vectoriel et $f \in \mathcal{L}(E)$ tel que P(f) = 0.

- 1. Montrer que : $E = \ker (f a_1 I d_E) \oplus \ker (f a_2 I d_E) \oplus \ldots \ker (f a_n I d_E)$
- 2. Montrer que : $P = \pi_f \iff \forall i \in [1, n], \ker(f a_i I d_E) \neq \{0_E\}$

Exercice 8. Soit E un \mathbb{K} - espace vectoriel et $f \in \mathcal{L}(E)$. On suppose que $\pi_f = X^3 - X$. Montrer que $E = \ker(f) \oplus \operatorname{Im}(f)$ et que l'endomorphisme induit par f sur $\operatorname{Im}(f)$ est bijectif.

Exercice 9. Soit E un \mathbb{K} — espace vectoriel et $f \in \mathcal{L}(E)$. On suppose que $\pi_f(0) = 0$ et $\pi'_f(0) \neq 0$. Montrer que $E = \ker(f) \oplus \operatorname{Im}(f)$.

Exercice 10. Soient A et B deux polynômes non nuls de $\mathbb{K}[X]$ et D leur PGCD. Soit E un $\mathbb{K}-$ espace vectoriel et $f \in \mathcal{L}(E)$. Montrer que :

- 1. $\ker(A(f)) \bigcap \ker(B(f)) = \ker(D(f))$
- 2. Im(A(f)) + Im(B(f)) = Im(D(f))

Exercice 11. Soit $A \in \mathcal{M}_n(\mathbb{K})$ définie par $a_{i,j} = 1$ si i + j = n et $a_{i,j} = 0$ sinon. Déterminer π_A .

Exercice 12. Soit E un \mathbb{C} -ev et $f \in \mathcal{L}(E)$ dont le polynôme minimal est $\pi_f = \frac{1}{3} \left(3X^3 - X^2 - X - 1 \right)$

- 1. Déterminer les racines $\alpha_1, \alpha_2, \alpha_3$ de π_f . On note (L_1, L_2, L_3) la base des polynômes interpolateurs de Lagrange en $\alpha_1, \alpha_2, \alpha_3$.
- 2. Pour $n \in \mathbb{N}$, exprimer f^n en fonction de $L_1(f), L_2(f)$ et $L_3(f)$. Montrer que $(f^n)_{n \in \mathbb{N}}$ converge vers un projecteur de E dont on précisera le noyau et l'image.

Exercice 13. Soit E un \mathbb{C} -ev de dimension finie et $f \in \mathcal{L}(E)$. On suppose que le polynôme minimal de f est scindé à racines simples : $\alpha_1, \alpha_2, \ldots, \alpha_p$. En utilisant la base des polynômes interpolateurs de Lagrange en $\alpha_1, \alpha_2, \ldots, \alpha_p$, montrer que la suite $(f^n)_{n \in \mathbb{N}}$ converge si et seulement si $\forall i \in [1, p], |\alpha_i| < 1$ ou $\alpha_i = 1$. Montrer que lorsque la limite de $(f^n)_{n \in \mathbb{N}}$ existe, c'est soit l'endomorphisme nul soit un projecteur.

ELEMENTS PROPRES, SOUS-ESPACES STABLES

Exercice 14. Soit E le \mathbb{C} -ev des suites de complexes et d l'endomorphisme de E qui à une suite $(u_n)_{n\in\mathbb{N}}$ associe la suite $(v_n)_{n\in\mathbb{N}}=(u_{n+1})_{n\in\mathbb{N}}$. Déterminer les valeurs propres et les vecteurs propres de d.

Exercice 15. Soit $f \in \mathcal{L}(\mathbb{R}[X])$ défini par : $\forall P \in \mathbb{R}[X]$, $f(P) = (2X + 1)P - (X^2 - 1)P'$. Déterminer les valeurs propres et les vecteurs propres de f.

Exercice 16. E étant un \mathbb{K} -ev, f et g deux endomorphismes de E tels que $f \circ g - g \circ f = f$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $f^n \circ g g \circ f^n = nf^n$
- 2. En utilisant l'application $\varphi: \begin{pmatrix} \mathscr{L}(E) & \longrightarrow & \mathscr{L}(E) \\ f & \longmapsto & f \circ g g \circ f \end{pmatrix}$, montrer que, si E est de dimension finie, alors f est nilpotent.

Exercice 17. Soit $f \in \mathcal{L}(\mathbb{R}[X])$ défini par : $\forall P \in \mathbb{R}[X]$, f(P) = X(P' + P'(0)) - 2(P - P(0)). Déterminer les valeurs propres et les sous-espaces propres de f.

Exercice 18. Soit E un \mathbb{R} —ev et p un projecteur de E. Montrer qu'un endomorphisme u de E commute avec p si et seulement si $\ker(p)$ et $\operatorname{Im}(p)$ sont stables par u

Exercice 19. $E = \mathscr{C}^0([0,1],\mathbb{R})$. A toute application f de E, on associe l'application u(f) définie par : $\forall x \in [0,1]$, $u(f)[x] = \int_0^1 \inf(x,t) f(t) dt$.

- 1. Montrer que $u \in \mathcal{L}(E)$ et que : $\forall f \in E, u(f)$ est de classe \mathcal{C}^2 sur [0,1] avec de plus [u(f)]'' = -f.
- 2. Déterminer les valeurs propres et les sous-espaces propres de \boldsymbol{u}

Exercice 20. Soit $u \in \mathcal{L}(\mathbb{R}^3)$ et A sa matrice dans la base canonique. On note v l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est tA . Soit \mathscr{P} le plan vectoriel d'équation ax+by+cz=0 avec $(a,b,c)\neq (0,0,0)$.

- 1. Montrer que $\mathscr P$ est stable par u si et seulement si le vecteur $\begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est un vecteur propre de v
- 2. Déterminer les sous-espaces de \mathbb{R}^3 stables par u lorsque $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$

Exercice 21. Soit $u \in \mathcal{L}(\mathbb{R}^3)$ dont la matrice dans la base canonique est $A = \begin{pmatrix} 2 & -1 & 2 \\ 5 & -3 & 3 \\ -1 & 0 & -2 \end{pmatrix}$

- 1. Déterminer la seule droite vectorielle de \mathbb{R}^3 stable par u.
- 2. Montrer que le seul plan de \mathbb{R}^3 stable par u est $\ker (u+Id)^2$ et en déterminer une base