NORMES

Exercice 1. Dans $E = \mathbb{R}^2$, on pose, pour X = (x, y), N(X) = Sup(|x|, |y|, |x-y|)Montrer que N est une norme et représenter dans le plan les vecteurs X = (x, y) tels que N(X) = 1.

Exercice 2. N_1 et N_2 sont deux normes d'un espace vectoriel E et on pose $B_i = \{x \in E \mid N_i(x) < 1\}$. On suppose que $B_1=B_2$ et on veut montrer que $N_1=N_2$:

- 1. Montrer que $\forall x \in E, \forall t \in \mathbb{R}_+^*, \frac{1}{N_1(x)+t}.x \in B_1$, en déduire que $N_2(x) \leqslant N_1(x)+t$
- 2. Montrer que $\forall x \in E, N_2(x) \leq N_1(x)$. Conclure en montrant que $N_1 = N_2$.

Exercice 3. Banque CCP MP On note $\mathbb{R}[X]$ l'espace vectoriel des polynômes à coefficients réels.

Pour tout
$$P \in E$$
, on pose : $N_1(P) = \sum_{i=0}^n |a_i|$ et $N_\infty(P) = \max_{i \in \llbracket 0, n \rrbracket} |a_i|$ où $P = \sum_{i=0}^n a_i X^i$ avec $n \geqslant \deg P$

- 1. (a) Démontrer que N_1 et N_{∞} sont des normes sur $\mathbb{R}[X]$
 - (b) Démontrer que tout ouvert pour la norme N_{∞} est un ouvert pour la norme N_1
 - (c) Démontrer que les normes N_1 et N_{∞} ne sont pas équivalentes
- 2. Soit $k \in \mathbb{N}$. On note $\mathbb{R}_k[X]$ le sous-espace vectoriel de $\mathbb{R}[X]$ constitué par les polynômes de degré inférieur ou égal à k. On note N_1' la restriction de N_1 à $\mathbb{R}_k[X]$ et N_∞' la restriction de N_∞ à $\mathbb{R}_k[X]$. Les normes N_1' et N_∞' sont-elles

Exercice 4. On munit $\mathcal{M}_{n,1}(\mathbb{R})$ de la norme infinie $\|.\|_{\infty}$ définie par : Si $X = (x_i)_{1 \le i \le n} \in \mathcal{M}_{n,1}(\mathbb{R}), \|X\|_{\infty} = \max_{1 \le i \le n} |x_i|.$

Pour
$$A \in \mathcal{M}_n(\mathbb{R})$$
, on pose $|||A||| = \sup_{X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}} \frac{||AX||_{\infty}}{||X||_{\infty}}$

- 1. Montrer que pour tout $A \in \mathcal{M}_n(\mathbb{R})$, |||A||| est bien définie.
- 2. Montrer que l'application |||.||| est une norme sur $\mathcal{M}_n(\mathbb{R})$ qui vérifie : pour tous $A, B \in \mathcal{M}_n(\mathbb{R}), |||AB||| \leq |||A||| \times |||B|||$
- 3. Montrer que, pour tout $A \in \mathcal{M}_n(\mathbb{R})$, $|||A||| = \max_{1 \leq i \leq n} \left(\sum_{i=1}^n |a_{i,j}| \right)$

Exercice 5. Pour tout P de $\mathbb{R}[X]$, on pose $N(P) = \sum_{k=0}^{\infty} |P^{(k)}(0)|$. Montrer que l'on définit ainsi une norme sur $\mathbb{R}[X]$.

Exercice 6. Pour $n \in \mathbb{N}^*$, on pose $E = \mathbb{R}_n[X]$. Soit $k \in \mathbb{N}^*$, et $a_0, a_1, \ldots a_k, k+1$ réels distincts. Pour $P \in E$, on pose $N(P) = |P(a_0)| + |P(a_1)| + \ldots + |P(a_k)|.$

- 1. Montrer que N est une application vérifiant l'axiome d'homogénéité et l'inégalité triangulaire.
- 2. Donner une condition nécessaire et suffisante sur k pour que N soit une norme.

Exercice 7. $\ell^{\infty}(\mathbb{C})$ désigne l'ensemble des suites bornées de nombres complexes.

- 1. Pour $u=(u_n)\in\ell^\infty(\mathbb{C})$, on pose $N_\infty(u)=\sup\{|u_n|,\ n\in\mathbb{N}\}$. Montrer que N_∞ est une norme d'algèbre dans $\ell^\infty(\mathbb{C})$. On désigne par E le sous-ensemble de $\ell^{\infty}(\mathbb{C})$ constitué des suites dont le premier terme est nul.
- 2. Montrer brièvement que E est un \mathbb{C} ev.
- 3. Pour $u = (u_n)_{n \in \mathbb{N}}$ dans E, on pose $N(u) = \sup\{|u_{n+1} u_n|, n \in \mathbb{N}\}$. Montrer que (E, N) est un espace vectoriel
- 4. Montrer que : $\forall u \in E, \ N(u) \leq 2N_{\infty}(u) \text{ et } : \exists u \in E \setminus \{0\}, \ N(u) = 2N_{\infty}(u).$
- 5. Montrer que les deux normes N et N_{∞} ne sont pas équivalentes.

Exercice 8. E désigne ici le \mathbb{C} ev $\mathbb{C}[X]$ des polynômes à coefficients complexes.

Pour $P = \sum a_n X^n$ élément de E, on pose

Pour
$$P = \sum a_n X$$
 element de E , on pose :
$$N_1(P) = \sum_{k \in \mathbb{N}} |a_k|, \qquad N_2(P) = \sqrt{\sum_{k \in \mathbb{N}} |a_k|^2}, \qquad N_{\infty}(P) = \sup\{|a_k|, k \in \mathbb{N}\}$$

Prouver que l'on définit ainsi trois normes et montrer que N_1 et N_2 (respectivement N_1 et N_∞ , N_∞ et N_2) ne sont pas équivalentes.

Exercice 9. Soit $E = \mathcal{C}^0([0;\pi],\mathbb{R})$. On pose, pour $f \in E$, $N(f) = \int_0^{\pi} |f(t)| \sin t dt$

1. Montrer que N est une norme. Déterminer des constantes b et β strictement positives telles que : $\forall f \in E, \ N(f) \leq bN_1(f) \text{ et } N(f) \leq \beta N_{\infty}(f).$

Pour $n \in \mathbb{N}^*$ on définit f_n sur $[0,\pi]$ par : $f_n(x) = 1 - nx$ si $x \in [0,\frac{1}{n}]$ et $f_n(x) = 0$ sinon.

2. Calculer $N(f_n)$, $N_1(f_n)$ et $N_{\infty}(f_n)$ puis montrer que N n'est équivalente ni à N_1 ni à N_{∞} .

Exercice 10. En utilisant l'équivalence des normes en dimension finie, prouver que :

 $\operatorname{Inf}\left\{\int_{0}^{1} |P(t)| dt, P \in \mathbb{R}_{n}[X], P \text{ unitaire}\right\} \text{ est un réel non nul.}$

Exercice 11. Dans \mathbb{R}^2 , on pose $N(x,y) = \sup\{|x + ty|, t \in [0;1]\}$.

- 1. Montrer que l'on définit ainsi une norme sur \mathbb{R}^2 .
- 2. Pour y > 0, étudier les variations sur [0,1] de $t \to x + ty$, puis de $t \to |x + ty|$ et représenter la boule unité pour la norme N i.e. $\{(x,y) \ / \ N(x,y) \leqslant 1\}$

Exercice 12. Pour toute matrice $A = (a_{ij})$ de $\mathcal{M}_n(\mathbb{R})$, on pose $||A|| = \sup_{i \in \{1,n\}} \left\{ \sum_{i=1}^n |a_{ij}|, j \in [1;n] \right\}$.

- 1. Montrer que l'on définit ainsi une norme d'algèbre.
- 2. Montrer qu'en posant $N(A) = \sup_{(i,j) \in <1, n>^2} \{ |a_{ij}| \}$, on définit une norme dans $\mathcal{M}_n(\mathbb{R})$ qui n'est pas une norme d'algèbre (utiliser par exemple la matrice J dont tous les termes valent 1).

Exercice 13. Soit E un espace euclidien et x un vecteur de E. Montrer que $||x|| = \sup_{\|y\| \le 1} |(x|y)|$.

TOPOLOGIE DANS UN EVN

Exercice 14. A et B étant deux parties non vides d'un espace vectoriel normé (E, N), justifier l'existence de : $\delta(A, B) = \text{Inf}\{d(a, b), (a, b) \in A \times B\}$ et donner un exemple de parties A et B disjointes telles que $\delta(A, B) = 0$.

Exercice 15. A et B sont deux parties non vides d'un espace vectoriel normé (E, N) avec A bornée.

- 1. Montrer que $\{d(a,b), (a,b) \in A^2\}$ admet une borne supérieure. Celle-ci est par définition le diamètre de A, noté diam(A).
- 2. Exemple : Soit r un réel strictement positif et a un vecteur de E. Démontrer que le diamètre de la boule fermée de centre a et de rayon r vaut 2r.
- 3. Quel est le diamètre de la sphère de centre a et de rayon r?

Exercice 16. Soient A et B des parties d'un espace vectoriel normé (E, N).

- 1. Montrer que : $A \subset B \Rightarrow \mathring{A} \subset \mathring{B}$
- 2. Montrer que : $\overrightarrow{A \cap B} = \mathring{A} \cap \mathring{B}$
- 3. Montrer que $\mathring{A} \cup \mathring{B} \subset \widetilde{A \cup B}$ et donner un exemple (dans \mathbb{R} par exemple) où cette inclusion est stricte.

Exercice 17. Soient A et B des parties d'un espace vectoriel normé (E, N).

- 1. Montrer que : $A \subset B \Rightarrow \overline{A} \subset \overline{B}$
- 2. Comparer par l'inclusion $\overline{A \cap B}$ avec $\overline{A} \cap \overline{B}$ puis $\overline{A} \cup \overline{B}$ avec $\overline{A \cup B}$.

Exercice 18. A est une partie non vide et bornée d'un E.V.N. Montrer que \overline{A} est bornée et $\operatorname{Diam}(A) = \operatorname{Diam}(\overline{A})$ (le diamètre d'une partie bornée est défini à l'exercice 15).

Exercice 19. A est une partie non vide d'un espace vectoriel normé (E, N). Montrer que si A est convexe, son adhérence et son intérieur sont également convexes.

Exercice 20. On se place dans un espace vectoriel normé (E, N).

1. Montrer que si $\Omega \subset E$ est un ouvert, alors $\Omega \subset \mathring{\overline{\Omega}}$.

- 2. Montrer que si $H \subset E$ est un fermé, alors $\overline{\mathring{H}} \subset H$.
- 3. Exhiber une partie A de \mathbb{R} pour laquelle : A, \bar{A} , \dot{A} , sont deux à deux distinctes, puis prouver que l'on ne peut pas faire mieux.

Exercice 21. Dans un espace vectoriel normé (E, N), soient U et V deux ouverts denses dans E, montrer que $U \cap V$ est un ouvert dense dans E.

Exercice 22. A est une partie non vide d'un espace vectoriel normé (E, N).

- 1. Montrer que : $\mathring{A} = A \Leftrightarrow A \cap Fr(A) = \emptyset$.
- 2. Montrer que : $\overline{A} = A \Leftrightarrow Fr(A) \subset A$.

Exercice 23. A et B sont deux parties d'un espace vectoriel normé (E, N) qui sont denses dans E

- 1. Montrer que si A et B sont disjointes, alors A et B sont d'intérieur vide.
- 2. Montrer que si de plus A est un ouvert, alors $A \cap B$ est dense dans E.

Exercice 24. Montrer que si A est une partie convexe d'un espace vectoriel normé, son adhérence et son intérieur sont également convexes.

Exercice 25. A est une partie non vide d'un espace vectoriel normé (E, N).

- 1. Montrer que : $\forall x \in E, d(x, A) = 0 \Leftrightarrow x \in \overline{A}$.
- 2. Prouver que : $\forall x \in E, d(x, A) = d(x, \overline{A})$

Exercice 26. $A = \{ (-1)^n + \frac{1}{n+1}, n \in \mathbb{N}^* \}$ est-il fermé? Quelle est son adhérence?

Exercice 27. Soit E un espace vectoriel normé et F un sous-espace vectoriel de E. Montrer que \overline{F} est un sous-espace vectoriel de E. Que se passe-t-il si F est de dimension finie

Exercice 28. A et B sont deux parties denses d'un espace vectoriel normé.

- 1. Montrer que si elles sont disjointes, elles sont d'intérieur vide.
- 2. Montrer que si l'une d'elles est un ouvert, alors $A \cap B$ est dense.

COMPACTS

Exercice 29. On donne une suite (u_n) de réels positifs.

- 1. Montrer que si (u_n) ne diverge pas vers $+\infty$, (u_n) a au moins une valeur d'adhérence.
- 2. Montrer que si (u_n) est non majorée, (u_n) a une suite extraite qui diverge vers $+\infty$.

Exercice 30. Soit A une partie non vide de \mathbb{R} .

- 1. Montrer que si A est fermée et majorée, alors A admet un maximum.
- 2. Montrer que si A est compacte, alors A possède un maximum et un minimum.

Exercice 31. On se place dans $\mathcal{M}_2(\mathbb{R})$.

- 1. Montrer que l'ensemble des matrices diagonales de $\mathcal{M}_2(\mathbb{R})$ est fermé. Est-il compact?
- 2. Montrer que SO(2) (matrices orthogonales de déterminant 1) est compact.

Exercice 32. Si A et B sont deux parties d'un espace vectoriel normé (E, N), on pose $A + B = \{a + b, a \in A \text{ et } b \in B\}$.

- 1. Montrer que : A fermé et B compact $\Rightarrow A + B$ fermé.
- 2. Montrer que : A et B compacts $\Rightarrow A + B$ compact.
- 3. Donner un exemple de parties fermées A et B pour lesquelles A+B n'est pas fermé.

Exercice 33. On norme
$$E = \mathbb{R}[X]$$
 en posant $N_{\infty}\left(\sum_{k=0}^{+\infty} a_k X^k\right) = \sup_{k \in \mathbb{N}} |a_k|$.

- 1. Montrer que dans (E, N_{∞}) la suite $(X^n)_{n \in \mathbb{N}}$ n'admet pas de valeur d'adhérence.
- 2. Que peut-on en conclure concernant la boule unité et la sphère unité de (E, N_{∞}) ?

Exercice 34. Dans un E.V.N. E, on donne une suite $(A_n)_{n\in\mathbb{N}}$ de parties compactes et non vides que l'on suppose décroissante $(\forall n, A_{n+1} \subset A_n)$. Montrer que l'intersection de cette famille est un compact non vide de E.

Exercice 35. Soit (x_n) une suite de réels non majorée. Montrer que l'on peut extraire de (x_n) une suite qui diverge vers $+\infty$.

Exercice 36. 1. (a_n) est une suite de réels positifs qui ne diverge pas vers $+\infty$.

- (a) Montrer que (a_n) admet une sous-suite bornée.
- (b) Montrer que (a_n) admet une sous-suite convergente.

 2^{o}) (x_{n}) est une suite de rationnels positifs qui converge vers un irrationnel a. Pour tout $n \in \mathbb{N}$ on écrit sous forme irréductible $x_{n} = \frac{p_{n}}{q_{n}}$, $(p_{n}, q_{n}) \in \mathbb{N}^{2}$. Montrer que (q_{n}) et (p_{n}) divergent vers $+\infty$.

Exercice 37. (u_n) est une suite d'un espace vectoriel normé (E, N). Soit $L \in E$, montrer que L est valeur d'adhérence de (u_n) si et seulement si :

$$\forall \varepsilon > 0, \ \forall n \in \mathbb{N}, \ \exists p \in \mathbb{N}, \ p \geqslant n \ / \ N(u_p - L) < \varepsilon$$

Exercice 38. Soit A une partie compacte non vide de \mathbb{R} . Montrer que A a un minimum et un maximum.

Exercice 39. A et B sont deux parties non vides d'un espace vectoriel normé.

- 1. Justifier l'existence de $d(A, B) = \text{Inf}\{d(a, b), (a, b) \in A \times B\}$.
- 2. Montrer l'existence de suites $(a_n) \in A^{\mathbb{N}}$ et $(b_n) \in B^{\mathbb{N}}$ telles que $d(A,B) = \lim_{n \to \infty} N(b_n a_n)$.
- 3. Montrer que si A et B sont compacts, il existe $a \in A$ et $b \in B$ tels que d(A, B) = N(b a).
- 4. Montrer que si A et B sont compacts, $d(A,B)=0 \Leftrightarrow A\cap B\neq \emptyset$. Donner un exemple de fermés A et B disjoints tels que d(A,B)=0.

Exercice 40. Soit K une partie compacte d'un espace vectoriel normé. Montrer que : $\exists (a,b) \in K^2 / \operatorname{diam}(K) = d(a,b)$.

Exercice 41. Soit $(a,b) \in (\mathbb{R}_+^*)^2$. Montrer que $E_{(a,b)} = \{(x,y) \in \mathbb{R}^2 \ / \ \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1\}$ est une partie compacte de \mathbb{R}^2 .

Exercice 42. Montrer que l'ensemble des matrices carrées de taille p dont les coefficients sont positifs et de somme égale à 1 constitue une partie compacte de $\mathcal{M}_p(\mathbb{R})$.

Exercice 43. $E = \mathbb{R}[X]$ est normé par $\left\| \sum_{k=0}^{+\infty} a_k X^k \right\| = \sum_{k=0}^{\infty} |a_k|$. Pour tout entier n, on pose $P_n = \sum_{k=0}^n \frac{1}{2^{k+1}} X^k$.

Montrer, en utilisant la suite (P_n) que dans (E, ||.||), la boule unité n'est pas compacte. Construire un autre exemple de suite bornée sans valeur d'adhérence.

Exercice 44. $E = \mathscr{C}^0([0,2],\mathbb{R})$ est normé par la norme de la convergence uniforme.

 $\forall n > 0, \text{ on définit } f_n \text{ élément de } E \text{ par : } \begin{cases} f_n(t) = 1 \text{ si } t \in [0; \frac{1}{2}] \\ f_n(t) = 0 \text{ si } t \in [\frac{1}{2} + \frac{1}{n}; 2] \\ f_n \text{ est affine sur } [\frac{1}{2}; \frac{1}{2} + \frac{1}{n}] \end{cases}$

- 1. Soit φ une fonction strictement croissante de \mathbb{N} dans \mathbb{N} . On suppose que $(f_{\varphi(n)})$ est convergente vers f dans (E, N_{∞}) .
 - (a) Montrer que : $\forall x \in [0,2], |f(x) f_{\varphi(n)}(x)| \leq N_{\infty}(f f_{\varphi(n)}).$ En déduire que $\forall x \in [0,\frac{1}{2}], f(x) = 1.$
 - (b) Soit $x > \frac{1}{2}$. Montrer l'existence d'un rang n_1 au delà duquel $x \in [\frac{1}{2} + \frac{1}{\varphi(n)}; 2]$. En déduire que f(x) = 0.
- 2. Montrer que la boule unité de (E, N_{∞}) n'est pas compacte.

Exercice 45. Théorème de Riesz

- 1. Soit F un sous-espace vectoriel de dimension finie d'un EVN E.
 - (a) Montrer que pour tout $a \in E$, il existe $x \in F$ tel que d(a, F) = ||a x||
 - (b) On suppose $F \neq E$. Montrer qu'il existe $a \in E$ tel que d(a, F) = 1 et ||a|| = 1.
- 2. On suppose que E est de dimension infinie.

Montrer qu'il existe une suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de E tels que :

 $\forall n \in \mathbb{N}, ||a_n|| = 1 \text{ et } d(a_{n+1}, \text{Vect}(a_0, \dots, a_n)) = 1.$

Conclure que la boule fermé unité de E n'est pas compacte.

3. En déduire le théorème de Riesz : Soit E un EVN. Alors : La boule fermée unité de E est compacte si et seulement si E est de dimension finie.