Devoir en temps libre no 00

Instructions générales:

Les candidats sont invités à porter une attention particulière à la rédaction : les copies illisibles ou mal présentées seront pénalisées.

PROBLEME 1

Dans tout ce problème, a désigne un réel.

On se propose d'étudier les suites réelles $(u_n)_{n\in\mathbb{N}}$ vérifiant une relation de récurrence du type :

pour tout
$$n$$
 de \mathbb{N} , $u_{n+1} = au_n + P(n)$

où P est un polynôme.

Le \mathbb{R} -espace vectoriel des suites réelles est noté $\mathbb{R}^{\mathbb{N}}$. Un élément de $\mathbb{R}^{\mathbb{N}}$ est noté indifféremment $(u_n)_{n\in\mathbb{N}}$ ou u.

La partie I étudie le cas où P est constant.

La partie II étudie le cas où $a \neq 1$.

La partie III étudie le cas où a = 1.

Partie I

Dans cette partie, on pose $E_a^{(0)} = \{u \in \mathbb{R}^{\mathbb{N}}; \quad \exists b \in \mathbb{R}; \quad \forall n \in \mathbb{N}, \quad u_{n+1} = au_n + b\}.$

- **1.** Soit $u \in E_a^{(0)}$. Il existe donc b réel tel que pour tout n de \mathbb{N} : $u_{n+1} = au_n + b$. Montrer l'unicité de b. On notera $b = b_u$ pour $u \in E_a^{(0)}$.
- 2.
- **2.a)** Déterminer $E_1^{(0)}$.
- **2.b)** Déterminer $E_0^{(0)}$.

Dans le reste de cette partie, a est supposé différent de 1.

- **3.** Montrer que $E_a^{(0)}$ est un \mathbb{R} -espace vectoriel.
- **4.** Soit x la suite constante égale à 1 (pour tout n de \mathbb{N} , $x_n = 1$) et soit y la suite définie, pour tout n de \mathbb{N} , par : $y_n = a^n$.

Montrer que (x,y) est une famille libre de $E_a^{(0)}$. On précisera les valeurs de b_x et b_y .

- **5.** Soit $u \in E_a^{(0)}$.
 - **5.a)** Montrer qu'il existe $(\lambda, \mu) \in \mathbb{R}^2$ unique tel que

$$\begin{cases} \lambda x_0 + \mu y_0 = u_0 \\ \lambda x_1 + \mu y_1 = u_1 \end{cases}$$

5.b) Montrer que, pour λ et μ définis à la question précédente, pour tout n de \mathbb{N} ,

$$u_n = \lambda x_n + \mu y_n$$

- **5.c)** Que peut-on en conclure?
- **6.** Déterminer $E_a^{(0)}$. On donnera en particulier la dimension de $E_a^{(0)}$.

Partie II

Dans cette partie, on suppose que $a \neq 1$.

On fixe un entier naturel p. On note $\mathbb{R}_p[X]$ le \mathbb{R} -espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à p.

On pourra confondre polynôme et fonction polynomiale.

On pose
$$E_a^{(p)} = \{ u \in \mathbb{R}^{\mathbb{N}}; \exists P \in \mathbb{R}_p[X]; \forall n \in \mathbb{N}, u_{n+1} = au_n + P(n) \}.$$

1. Soit $u \in E_a^{(p)}$. Il existe donc $P \in \mathbb{R}_p[X]$ tel que :

$$\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + P(n)$$

Montrer l'unicité de P (on pourra étudier l'application φ de $\mathbb{R}_p[X]$ dans \mathbb{R}^{p+1} définie par : $\varphi(P) = (P(0), P(1), ..., P(p))$).

On notera $P = P_u$ pour $u \in E_a^{(p)}$.

- **2.** Montrer que $E_a^{(p)}$ est un \mathbb{R} -espace vectoriel.
- **3.** Montrer que l'application θ définie sur $E_a^{(p)}$ par $\theta(u) = P_u$ est une application linéaire de $E_a^{(p)}$ dans $\mathbb{R}_p[X]$.
- **4.** Déterminer $\ker \theta$ (noyau de θ).
- **5.** Pour $k \in \mathbb{N}$, on pose $Q_k = (X+1)^k aX^k$.
 - **5.a)** Quel est le degré de Q_k ?
 - **5.b)** Montrer que la famille $(Q_0, Q_1, ..., Q_p)$ est une base de $\mathbb{R}_p[X]$.

6.

- **6.a)** Montrer que pour tout k dans $\{0, 1, ..., p\}$, Q_k est dans l'image de θ , notée Im θ .
- **6.b)** Que peut-on en conclure?
- 7. Déduire des questions précédentes la dimension de $E_a^{(p)}$.
- **8.** Pour $k \in \{0, 1, ..., p\}$, on pose $x^{(k)}$ la suite définie, pour tout n de \mathbb{N} , par : $x_n^{(k)} = n^k$. On rappelle que y est la suite définie, pour tout n de \mathbb{N} , par : $y_n = a^n$. Montrer que $(x^{(0)}, ..., x^{(p)}, y)$ est une base de $E_a^{(p)}$.
- **9.** Application : déterminer la suite $(u_n)_{n\in\mathbb{N}}$ vérifiant :

$$\begin{cases} \forall n \in \mathbb{N}, & u_{n+1} = 2u_n - 2n + 7 \\ u_0 = -2 \end{cases}$$

Partie III

Dans cette partie, on suppose que a=1.

1. En adaptant les résultats obtenus à la partie précédente, déterminer :

$$E_1^{(p)} = \left\{ u \in \mathbb{R}^{\mathbb{N}}; \quad \exists P \in \mathbb{R}_p[X]; \quad \forall n \in \mathbb{N}, \quad u_{n+1} = u_n + P(n) \right\}$$

2. Application : déterminer la suite $(u_n)_{n\in\mathbb{N}}$ vérifiant :

$$\begin{cases} \forall n \in \mathbb{N}, & u_{n+1} = u_n - 6n + 1 \\ u_0 = -2 \end{cases}$$

PROBLEME 2

Dans ce problème φ désigne une fonction continue strictement positive sur \mathbb{R} , sauf éventuellement en un nombre fini de points.

On suppose par ailleurs que φ possède une limite ℓ (finie ou infinie) en $+\infty$.

Le but de ce problème est d'étudier la fonction f où f(x) est défini, pour x réel, comme étant l'unique solution de l'équation (E_x) d'inconnue y:

$$(E_x) \qquad \int_{-\infty}^{y} \varphi(t) \, dt = 1$$

La partie I est consacrée à un exemple où l'on détermine explicitement f.

La partie II permet d'aboutir à l'existence de f si $\ell \neq 0$.

La partie III étudie des propriétés de la fonction f.

La partie IV illustre les parties II et III sans calcul explicite de f.

Partie I

Dans cette partie, la fonction φ est la fonction exponentielle exp.

- **1.** Prouver que pour tout x réel l'équation (E_x) possède une unique solution notée f(x). On montrera que $f(x) = \ln(1 + e^x)$.
- 2. Etudier les variations de f sur \mathbb{R} . Déterminer les limites de f aux bornes de l'intervalle d'étude.
- **3.** Montrer que la droite \mathcal{D} d'équation y = x est asymptote à la courbe \mathcal{C} représentant f. Préciser la position de celle-ci par rapport à l'asymptote.
- **4.** Déterminer un développement limité à l'ordre 2 pour la fonction f au voisinage de 0. En déduire l'équation de la tangente en 0 à \mathcal{C} et la position locale de la courbe \mathcal{C} par rapport à celle-ci.
- 5. Tracer l'allure de la courbe $\mathcal C$ dans un repère orthonormé, en utilisant les résultats des questions précédentes.

Partie II

Pour x réel, on pose $\Phi_x(u) = \int_0^u \varphi(t) dt$.

On rappelle que Φ_x est dérivable sur \mathbb{R} et que pour u réel, $\Phi'_x(u) = \varphi(u)$.

- **1.** Dans cetet question seulement, φ est définie, pour tout t réel, par : $\varphi(t) = \frac{1}{\pi(1+t^2)}$.
 - **1.a)** Montrer que pour x et y réels, $\int_{x}^{y} \varphi(t) dt < 1$.
 - **1.b)** En déduire que pour tout x réel, l'équation (E_x) n'a pas de solution.
 - **1.c)** Que vaut ℓ ? Dans tout le reste de ce problème, on suppose que $\ell \neq 0$.
- **2.** Exprimer l'équation (E_x) à l'aide de la fonction Φ_x .

3.

- **3.a)** Montrer que Φ_x est continue strictement croissante sur \mathbb{R} . Que peut-on en conclure?
- **3.b)** Montrer qu'il existe t_0 réel et A > 0 tels que pour tout $t \ge t_0$, $\varphi(t) \ge A$. On pourra distinguer les cas $\ell = +\infty$ et ℓ réel.

- **3.c)** En déduire que pour tout x réel, il existe $u \ge x$ tel que $\Phi_x(u) > 1$.
- **3.d)** En remarquant que $\Phi_x(x) = 0$, montrer que l'équation (E_x) possède une solution unique. Jusqu'à la fin de ce problème, f(x) désigne pour x réel, l'unique solution de l'équation (E_x) .

Partie III

- 1. Montrer, en justifiant l'écriture, que pour tout x réel, $f(x) = \Phi_0^{-1}(\Phi_0(x) + 1)$ (on pourra admettre les résultats de la question II.3).
- 2. En déduire que f est continue strictement croissante sur \mathbb{R} .

3.

3.a) On suppose dans cette question **a)**, que φ ne s'annule pas. Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R} et pour x réel, montrer que :

 $f'(x) = \frac{\varphi(x)}{\varphi(f(x))}.$

- **3.b)** On suppose dans cette question **b**), qu'il existe x_0 réel tel que $\varphi(x_0) \neq 0$ et tel que φ reste strictement positive sur un voisinage de $f(x_0)$ sauf en $f(x_0)$ où φ s'annule. Montrer que f n'est pas dérivable en x_0 mais que la courbe représentant f possède au point d'abscisse x_0 une tangente verticale.
- **4.** On se propose d'étudier la branche infinie de f au voisinage de $+\infty$ dans le cas où $\ell = +\infty$. Soit $\varepsilon \in \mathbb{R}_+^{\times}$.
 - **4.a)** Montrer qu'il existe $a \in \mathbb{R}$ tel que pour $t \geqslant a$, $\varphi(t) \geqslant \frac{1}{\varepsilon}$.
 - **4.b)** En déduire que si $x \ge a$, $|f(x) x| \le \varepsilon$. Que peut-on en conclure?
- **5.** Etudier de même la branche infinie de f au voisinage de $+\infty$ dans le cas où $\ell \in \mathbb{R}_+^{\times}$.
- 6. Dans cette question, on suppose φ paire. On note Γ le graphe de f.
 - **6.a)** Soit $(x,y) \in \mathbb{R}^2$. Montrer que $(x,y) \in \Gamma$ si et seulement si $(-y,-x) \in \Gamma$.
 - **6.b)** En déduire que la courbe représentant f possède un axe de symétrie à déterminer.

Partie IV

Dans cette partie, φ est la fonction définie, pour tout x réel, par $\varphi(x) = x^4 - 2x^2 + 1$.

- 1. Justifier que φ vérifie les hypothèses du problème.
- 2. Sans calculer f(x) et en utilisant les résultats des parties précédentes, esquisser le graphe de la fonction f, en précisant les éléments remarquables (asymptotes, axe de symétrie, points à tangentes horizontales ou verticales).