
π⃝ Lycée MARCEAU Informatique

TP N˚5 : Implémentation du bassin d’attraction.

Le jeu de Nim est un jeu à information complète où deux joueurs jouent chacun leur tour pour
prendre des jetons d’un tas commun. Le but est de laisser le dernier jeton pour gagner. Dans ce
TP, nous allons implémenter en Python les fonctions permettant de calculer le bassin d’attraction
d’un joueur pour ce jeu et l’algorithme de Minimax pour trouver le meilleur coup à jouer (TP
suivant).

Le bassin d’attraction est l’ensemble des états du jeu qui sont gagnants pour un joueur donné,
si ce joueur joue optimalement. L’algorithme de Minimax est utilisé pour déterminer le meilleur
coup à jouer pour un joueur en utilisant l’arbre des différents états du jeu et en prenant en compte
les coups possibles des joueurs suivants. Il permet d’optimiser les gains d’un joueur en maximi-
sant les gains et minimisant les pertes potentielles.

Les fonctions pour créer le graphe et l’arbre du jeu de Nim à un tas seront données et nous allons
les utiliser pour créer les exemples de jeu et les tests.

Préambule
1 Récupérer le fichier TPini.py se trouvant sur cahier de prépa.

Sur ce fichier figure deux fonctions Graphe_Nim(n) et Arbre_Nim(n) qui prend en argument
un entier n correspondant au nombre de bâtons et qui renvoie un triplet (S,A,E) de trois listes.

• La première liste est une liste d’entiers qui représente les sommets du graphe.

• La seconde liste est une liste de listes d’entiers qui représente les arêtes du graphe ou les fils
de chaque nœud de l’arbre.

• La troisième liste est une liste de chaînes de caractères qui représente les étiquettes des
sommets ou des nœuds, l’étiquette "i ;k" indique qu’il reste i bâtons et que c’est le joueur k
qui doit jouer.

2 Regarder ce que renvoie les deux fonctions pour n = 6, on pourra ajouter les indices de S
représentant les sommets du graphe ou arbre aux deux figures suivantes :

MPSI 1/4



MPSI-Informatique 2/4



Bassin d’attraction
L’objectif de ce TP est de construire une fonction de calcul de bassin d’attraction qui fonctionne

pour tous les graphes de jeux. Cette fonction prend en entrée un graphe de jeu et renvoie le
bassin d’attraction d’un joueur donné. Le bassin d’attraction est l’ensemble des états du jeu qui
sont gagnants pour ce joueur, s’il joue de manière optimale. Cette fonction doit être linéaire par
rapport à la somme du nombre d’arêtes et de sommets.

3 Écrire une fonction predsuccesseur(S,A) qui prend en argument une liste de sommets S et
d’arêtes A et qui renvoie :

• une liste suc telle que suc[i] est la liste des successeurs du sommet i ;

• une liste nbsuc telle que nbsuc[i] est le nombre de successeurs du sommet i ;

• une liste pred telle que pred[i] est la liste des prédécesseurs du sommet i ;

• une liste nbpred telle que nbpred[i] est le nombre de prédécesseurs du sommet i.

La fonction sera linéaire par rapport au nombre d’arêtes.

4 Écrire une fonction J0_Nim(S,A,E) qui prend en argument le triplet (S,A,E) renvoyer par la
fonction graphe_nim(n) et qui renvoie dans l’ordre :

• La liste des sommets contrôlés par le joueur J0, la variable sera nommée S0 par la suite ;

• La liste des sommets gagnants pour le joueur J0 , la variable sera nommée F0 par la
suite.

5 Écrire une fonction Bassin_attraction(S,A,F0,S0) qui prend en argument des variables
sus-cités, et renvoie la liste des sommets dans le bassin d’attraction du joueur J0. On rappelle
qu’on détermine ce bassin de manière itérative en rajoutant dans la liste des sommets déjà
connus :

• Les sommets contrôlés par J0 dont une arête pointe vers un sommet du bassin déjà
connu

• Les sommets contrôlés par J1 dont toutes les arêtes pointent vers des sommets du bas-
sin déjà connus.

et ce, tant qu’on trouve de nouveaux sommets à rajouter dans le bassin entre chaque itéra-
tion. On initialise le bassin d’attraction à F0.

Pour cela, on va définir une fonction m_et_p(s,attr,compt,pred,S0) qui prend en argu-
ment un entier s représentant un sommet du bassin d’attraction, attr une liste d’entiers
contenant les sommets déjà dans le bassin d’attraction, une liste d’entier compt qui contient
un compteur pour chaque sommet, et une liste pred tel que pred[u] est la liste des prédéces-
seurs de u.

• La fonction rajoutera s à attr s’il ne l’est pas

• Pour chaque u prédécesseur de s :

• on baissera le compteur associé à u de 1
• Si u est dans S0 ou son compteur est arrivé à 0, on lance

m_et_p(u,attr,compt,pred,S0)

MPSI-Informatique 3/4



La fonction bassin d’attraction initialisera attr à [], compt[i] au nombre de successeurs du
sommet i, pred[i] à sa liste des prédécesseurs. et lancera la fonction m_et_p sur tous les
points de F0.

Le principe est de partir des points de F0, élément trivial du bassin d’attraction et pour
chaque arête pointant vers ces éléments :

• l’origine est dans S0 donc contrôlés par le joueur J0 : c’est un nouveau élément du
bassin, récursivement on regarde les arrêtes pointant sur lui ;

• l’origine n’est pas dans S0 mais son compteur est arrivé à 0 : alors ces successeurs sont
dans le bassin d’attraction, c’est un élément du bassin d’attraction, récursivement on
regarde les arrêtes pointant sur lui.

6 Écrire une fonction strat(S,A,E,p) qui donne le successeur de p qu’il faut choisir pour
suivre une stratégie gagnante, on procédera de la manière suivante :

• Si un des successeur de p est dans le bassin d’attraction, on choisit un point du bassin
au hasard.

• Si aucun d’entre eux l’est, on choisit un successeur au hasard.

On peut se rendre compte qu’il y a sans doute mieux à faire que de choisir un point au hasard,
surtout si le jeu possède un gain en cas de victoire, on voudrait alors tenter de maximiser ce gain,
ou de minimiser des pertes. C’est le but de l’algorithme du minimax, que nous verrons au TP
suivant.

MPSI-Informatique 4/4


