corTP10O.py

001| import random as rd

002]

003]|

004 | ## Q1

005| def etiquette_en_jeu(etiquette):
006 | a,b=etiquette.split('|")

007 | b=b.split(',")

008| return a,[int(k) for k in b]
009 |

010| ## Q2

011| def jeu_en_etiquette(jeu):

012] texte=jeu[0]+"|"

013 for k in jeu[l]:

014 texte+=str(k)+"',"

015] return texte[:-1]

016 |

017| ## Q3

018| def terminaux(etiquette):

019] joueur, jeu=etiquette en jeu(etiquette)
020] if jeu[0:6]==[0,0,0,0,0,0] or jeul[7:13]==[0,0,0,0,0,0]:
021] return True

022] else:

023] return False

024]

025]

026 |

027]

028| ## fonction affichage
029| def affichage(etiquette):

030] joueur, jeu=etiquette en jeu(etiquette)

031] print(’ "+ '|" + str(jeu[-2]) + '|' + str(jeul-31) + '|' + str(jeul[-4]) + '|' + str(jeu[-5])
+ '|' + str(jeul[-6]) + '|' + str(jeu[-7]) + '|'+')

032] print(str(jeul-11)+" "*(3-len(str(jeu[-1])))+"'-"*13+" "*(3-len(str(jeul[6])))+str(jeul[6]))

|+ str(jeull]) + "|" + str(jeul[2]) + "|' + str(jeul[3]) +

033] print("’]+ str(jeu[O] +
|I+ I)

“|'' + str(jeu[4]) + '|' + str(jeu[5]) +
034

035]

036 |

037|

038]

039| ## Q4 ITERATIVE

040| def graphemancala_ite(profondeur=7,etiquette='0(4,4,4,4,4,4,0,4,4,4,4,4,4,0"',S=[],A=[1,E=[]):
041 S=[01

042 prof list=[0]

043 A=[1

044 | E=[etiquette]

045 list attente=[0]

046 | indice=0

047 | while indice<len(list attente):

048 indice sommet=list attente[indice]

049 prof=prof list[indice sommet]

050 etiquette=E[indice sommet]

051] joueur, jeu=etiquette en jeu(etiquette)

052] if (not terminaux(etiquette)) and prof<profondeur:
053] if joueur=="0":

054 | for s in range(6):

055] billes=jeuls]

056 | if billes!=0:

057| jeu new=[k for k in jeu]
058 | jeu new[s]=0

059 for 1 in range(1l,billes+1):
060 | jeu new[(s+1)%14]+=1
061 if (s+billes)%14!'=6:

062 | joueur new="1"

063] else:

064 | joueur new="0"

065 | if jeu new[(s+billes)%14]==1 and O<=(s+billes)%14<=5:

066 | billes recup=jeu new[12-((s-billes)%14)]

067 |
068
069 |
070
071|
072|
073|
074|
075|
076
077|
078|
079)|
080
081|
082|
083
084|
085|
086 |
087 |
088|
089|
090 |
091|
092|
093]
094 |
095|
096
097 |
098|
099
100 |
101 |

jeu new[12-((s-billes)%14)]=0
jeu new[6]+=billes recup
etiquette new=jeu en etiquette((joueur new,jeu new))
ind new sommet=len(S)
S.append(ind new sommet)
A.append([indice sommet,ind new sommet])
E.append(etiquette new)
prof list.append(prof+1)
list attente.append(ind new sommet)

if joueur=="1":
for s in range(7,13):
billes=jeu[s]
if billes!=0:

indice=indice+1
return S,A,E

jeu new=[k for k in jeu]
jeu new[s]=0
for 1 in range(1l,billes+1):
jeu new[(s+1)%14]+=1
if (s+billes)%14!=13:
joueur new="0Q"
else:
joueur new="1"
if jeu new[(s+billes)%14]==1 and 7<=(s+billes)%14<=12 :
billes recup=jeu new[12-(s+billes)%14]
jeu new[12-(s+billes)%14]1=0
jeu new[13]+=billes recup
etiquette new=jeu en etiquette((joueur new,jeu new))
ind new sommet=len(S)
S.append(ind new sommet)
A.append([indice sommet,ind new sommet])
E.append(etiquette new)
prof list.append(prof+l)
list attente.append(ind new sommet)

102|
103|
104 |
105 |
106 |
107 |
108|
109 |
110|
111|
112|
113|
114|
115|
116|
117|
118|
119|
120
121]
122|
123|
124
125|
126|
127|
128|
129
130
131|
132|
133|
134|
135|
136

Q4 RECURSIVE

def

def

ajout_sous_arbre(T,t,f):

A REMPLIR

S.append(k+1)
for (sl1,s2) in a:
A.append([s1+1l,s2+1])
E=E+e
A.append([f,1])
return S,A,E

graphemancala_rec(n,etiquette='0|4,4,4,4,4,4,0,4,4,4,4,4,4,0',5=[]1,A=[],E=[],1=0):
if i==0:
S=[0]
A=[1]
E=[etiquette]
if n==i:
return S,AE
joueur, jeu=etiquette en jeu(etiquette)
p=len(S)-1

if not terminaux(etiquette):
if joueur=="0":
for s in range(6):
billes=jeul[s]
if billes!=0:
jeu new=[k for k in jeu]

137|
138|
139
140 |
141|
142 |
143|
144 |
145 |
146 |
147 |
148|
149 |
150 |
151|
152|
153|
154 |
155|
156 |
157 |
158|
159
160 |
161|
162 |
163|
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171|

jeu new[s]=0
for 1 in range(1l,billes+1):
jeu new[(s+1)%14]1+=1
if (s+billes)%14!=6:
joueur new="1"
else:
joueur new="0Q"
if jeu new[(s+billes)%14]==1 and O<=(s+billes)%14<=5:
billes recup=jeu new[12-((s-billes)%14)]
jeu new[12-((s-billes)%14)]=0
jeu new[6]+=billes recup
etiquette new=jeu en etiquette((joueur new,jeu new))
T=S,A,E
t=graphemancala rec(n,etiquette new,[0],[],[etiquette new],i+1)
S,A,E=ajout sous arbre(T,t,p)
if joueur=="1":
for s in range(7,13):
billes=jeuls]
if billes!=0:
jeu new=[k for k in jeu]
jeu new[s]=0
for 1 in range(1l,billes+1):
jeu new[(s+1)%14]1+=1
if (s+billes)%14!=13:
joueur new="0"
else:
joueur new="1"
if jeu new[(s+billes)%14]==1 and 7<=(s+billes)%14<=12 :
billes recup=jeu new[12-(s+billes)%14]
jeu new[12-(s+billes)%14]1=0
jeu new[13]+=billes recup
etiquette new=jeu en etiquette((joueur new,jeu new))
T=S,A,E
t=graphemancala rec(n,etiquette new,[0],[],[etiquette new],i+1)
S,A,E=ajout sous arbre(T,t,p)

172|
173|
174|
175|
176|
177|
178|
179
180 |
181|
182|
183|
184 |
185 |
186 |
187 |
188|
189 |
190 |
191|
192|
193]
194 |
195|
196 |
197|
198|
199
200 |
201 |
202 |
203
204 |
205 |
206 |

return S,A,E

graphemancala=graphemancala ite #je choisis quelle fonction j'utilise pour la suite

Q5

def sommets controlés(S,A,E):
cont=[]
for k in range(len(E)):
if E[k][O]=="0":
cont.append(k)
return cont

Q6
def valeur(etiquette):
joueur, jeu=etiquette en jeu(etiquette)
if jeu[0:6]==[0,0,0,0,0,0] or jeu[7:13]==[0,0,0,0,0,0]:
return jeu[6]+sum(jeu[0:6])-jeu[l3]-sum(jeu[7:13])
else:
return jeu[6]-jeu[13]

Q7

def marq_et_prop(x,value,compt,suc,pred,SO,F):

A REMPLIR

207 |

208 if x in SO and x not in F:

209 value[x]=max([value[s] for s in suc[x]])

210 elif x not in SO and x not in F :

211 value[x]=min([value[s] for s in suc[x]])

212 for u in pred[x]:

213 compt[u]=compt[u]-1

214 if compt[u]==0:

215| value, compt=marq et prop(u,value,compt,suc,pred,S0O,F)

216 | return value, compt

217 |

218

219|

220 |

221| def predsuccesseur(S,A):

222 | e

223 La fonction prend en parametres :

224 | S: une liste d'entiers, qui correspond aux sommets d'un graphe

225 | A: une liste de tuples d'entiers (i,j), qui correspondent aux arétes d'un graphe

226 |

227 | La fonction renvoie un tuple contenant 4 listes:

228 | suc: une liste de listes, ou chaque sous-liste contient les successeurs d'un sommet de S
229 | nbsuc: une liste contenant le nombre de successeurs pour chaque sommet de S

230 | pred: une liste de listes, olU chaque sous-liste contient les prédécesseurs d'un sommet de S
231 nbpred: une liste contenant le nombre de prédécesseurs pour chaque sommet de S.

232 | En utilisant les informations fournies par S et A, cette fonction permet de construire les
listes des successeurs et prédécesseurs pour chaque sommet du graphe, ainsi que le nombre de successeurs
et prédécesseurs pour chaque sommet.

233 e

234 | suc=[[] for i in S]

235 nbsuc=[0 for i in S]

236 | pred=[[] for i in S]

237 | nbpred=[0 for i in S]

238 | for (i,j) in A:

239 suc[i].append(j)

240 | pred[j].append(i)

241 | nbpred[j]+=1

242 | nbsuc[i]+=1

243 | return suc,nbsuc,pred,nbpred

244 |

245 |

246 |

247 |

248| def minimax(S:list,A:list,E:list,SO:list,valeur)->list:
249 | L

250 | A REMPLIR

251| L

252 | value=["" for i in S]

253 suc,nbsuc,pred,nbpred=predsuccesseur(S,A)
254 | F=[1

255 for k in range(len(nbsuc)):

256 | if nbsuc[k]==0:

257 | F.append (k)

258 for i in range(len(F)):

259 value[F[i]]=valeur(E[F[1]])
260 | compt=nbsuc

261 for x in F:

262 | value,compt=marq et prop(x,value,compt,suc,pred,S0O,F)
263 | L=[1

264 | for k in suc[O]:

265 | if value[k]==value[0]:

260 | L.append(k)

267 | return value, E[rd.choice(L)]
268 |

269 |

270 |

271

272 |

273

274|

275|

276 |

277| ## Q8

278 |

279| def jouer(etiquette):

280 | billes=-1

281 while billes<=0:

282 | if billes==0:

283 print("mauvaise case, il n'y a plus de bille dans celle-ci ou c'est une case non
valide")

284 | s=input("quelle case jouée : ")

285 | s=int(s)

286 | if s>5:

287 | billes=0

288 | else:

289 | joueur, jeu=etiquette en jeu(etiquette)
290 | billes=jeuls]

291 jeu new=[k for k in jeu]

292 | jeu new[s]=0

293 for 1 in range(1l,billes+1):

294 | jeu new[(s+1)%14]+=1

295 | if (s+billes)%14!=6:

296 | joueur new="1"

297 | else:

298| joueur new="0"

299 | if jeu new[(s+billes)%14]==1 and O<=(s+billes)%14<=5:
300 billes recup=jeu new[12-(s+billes)%14]
301] jeu new[12-(s+billes)%14]1=0

302| jeu new[6]+=billes recup

303] etiquette new=jeu en etiquette((joueur new,jeu new))
304 return etiquette new

305

306|

307| ## Q9

308|

309| def game(etiquette='0|4,4,4,4,4,4,0,4,4,4,4,4,4,0"):

310
311|
312|
313|
314|
315|
316)|
317|
318|
319
320
321|
322|
323
324|
325|
326
327|
328|
329
330
331|
332|

affichage(etiquette)
while not terminaux(etiquette):
if etiquette[0]=='0":
etiquette=jouer(etiquette)
affichage(etiquette)
else:
print("Vador réfléchit")
S,A,E=graphemancala(6,etiquette)
v,etiquette=minimax(S,A,E,sommets controlés(S,A,E),valeur)
print("Vador joue:")
affichage(etiquette)
print("évaluation de 1'état de la partie par le seigneur du mal : ",v[0])
note=valeur(etiquette)
if note >0:
print("vous avez gagné!")
elif note==0:
print("match nul")
else:
print("vous avez perdu!")

10

