
corTP10.py

001| import random as rd
002|
003|
004| ## Q1
005| def etiquette_en_jeu(etiquette):
006| a,b=etiquette.split('|')
007| b=b.split(',')
008| return a,[int(k) for k in b]
009|
010| ## Q2
011| def jeu_en_etiquette(jeu):
012| texte=jeu[0]+'|'
013| for k in jeu[1]:
014| texte+=str(k)+','
015| return texte[:-1]
016|
017| ## Q3
018| def terminaux(etiquette):
019| joueur,jeu=etiquette_en_jeu(etiquette)
020| if jeu[0:6]==[0,0,0,0,0,0] or jeu[7:13]==[0,0,0,0,0,0]:
021| return True
022| else:
023| return False
024|
025|
026|
027|
028| ## fonction affichage
029| def affichage(etiquette):
030| joueur,jeu=etiquette_en_jeu(etiquette)
031| print(' ' + '|' + str(jeu[-2]) + '|' + str(jeu[-3]) + '|' + str(jeu[-4]) + '|' + str(jeu[-5])
+ '|' + str(jeu[-6]) + '|' + str(jeu[-7]) + '|'+' ')
032| print(str(jeu[-1])+' '*(3-len(str(jeu[-1])))+'-'*13+' '*(3-len(str(jeu[6])))+str(jeu[6]))

1

033| print(' ' + '|' + str(jeu[0]) + '|' + str(jeu[1]) + '|' + str(jeu[2]) + '|' + str(jeu[3]) +
'|' + str(jeu[4]) + '|' + str(jeu[5]) + '|'+' ')
034|
035|
036|
037|
038|
039| ## Q4 ITERATIVE
040| def graphemancala_ite(profondeur=7,etiquette='0|4,4,4,4,4,4,0,4,4,4,4,4,4,0',S=[],A=[],E=[]):
041| S=[0]
042| prof_list=[0]
043| A=[]
044| E=[etiquette]
045| list_attente=[0]
046| indice=0
047| while indice<len(list_attente):
048| indice_sommet=list_attente[indice]
049| prof=prof_list[indice_sommet]
050| etiquette=E[indice_sommet]
051| joueur,jeu=etiquette_en_jeu(etiquette)
052| if (not terminaux(etiquette)) and prof<profondeur:
053| if joueur=="0":
054| for s in range(6):
055| billes=jeu[s]
056| if billes!=0:
057| jeu_new=[k for k in jeu]
058| jeu_new[s]=0
059| for l in range(1,billes+1):
060| jeu_new[(s+l)%14]+=1
061| if (s+billes)%14!=6:
062| joueur_new="1"
063| else:
064| joueur_new="0"
065| if jeu_new[(s+billes)%14]==1 and 0<=(s+billes)%14<=5:
066| billes_recup=jeu_new[12-((s-billes)%14)]

2

067| jeu_new[12-((s-billes)%14)]=0
068| jeu_new[6]+=billes_recup
069| etiquette_new=jeu_en_etiquette((joueur_new,jeu_new))
070| ind_new_sommet=len(S)
071| S.append(ind_new_sommet)
072| A.append([indice_sommet,ind_new_sommet])
073| E.append(etiquette_new)
074| prof_list.append(prof+1)
075| list_attente.append(ind_new_sommet)
076| if joueur=="1":
077| for s in range(7,13):
078| billes=jeu[s]
079| if billes!=0:
080| jeu_new=[k for k in jeu]
081| jeu_new[s]=0
082| for l in range(1,billes+1):
083| jeu_new[(s+l)%14]+=1
084| if (s+billes)%14!=13:
085| joueur_new="0"
086| else:
087| joueur_new="1"
088| if jeu_new[(s+billes)%14]==1 and 7<=(s+billes)%14<=12 :
089| billes_recup=jeu_new[12-(s+billes)%14]
090| jeu_new[12-(s+billes)%14]=0
091| jeu_new[13]+=billes_recup
092| etiquette_new=jeu_en_etiquette((joueur_new,jeu_new))
093| ind_new_sommet=len(S)
094| S.append(ind_new_sommet)
095| A.append([indice_sommet,ind_new_sommet])
096| E.append(etiquette_new)
097| prof_list.append(prof+1)
098| list_attente.append(ind_new_sommet)
099|
100| indice=indice+1
101| return S,A,E

3

102|
103|
104|
105| ## Q4 RECURSIVE
106| def ajout_sous_arbre(T,t,f):
107| '''
108| A REMPLIR
109| '''
110| S,A,E=T
111| s,a,e=t
112| l=len(S)
113| for k in s:
114| S.append(k+l)
115| for (s1,s2) in a:
116| A.append([s1+l,s2+l])
117| E=E+e
118| A.append([f,l])
119| return S,A,E
120|
121|
122| def graphemancala_rec(n,etiquette='0|4,4,4,4,4,4,0,4,4,4,4,4,4,0',S=[],A=[],E=[],i=0):
123| if i==0:
124| S=[0]
125| A=[]
126| E=[etiquette]
127| if n==i:
128| return S,A,E
129| joueur,jeu=etiquette_en_jeu(etiquette)
130| p=len(S)-1
131| if not terminaux(etiquette):
132| if joueur=="0":
133| for s in range(6):
134| billes=jeu[s]
135| if billes!=0:
136| jeu_new=[k for k in jeu]

4

137| jeu_new[s]=0
138| for l in range(1,billes+1):
139| jeu_new[(s+l)%14]+=1
140| if (s+billes)%14!=6:
141| joueur_new="1"
142| else:
143| joueur_new="0"
144| if jeu_new[(s+billes)%14]==1 and 0<=(s+billes)%14<=5:
145| billes_recup=jeu_new[12-((s-billes)%14)]
146| jeu_new[12-((s-billes)%14)]=0
147| jeu_new[6]+=billes_recup
148| etiquette_new=jeu_en_etiquette((joueur_new,jeu_new))
149| T=S,A,E
150| t=graphemancala_rec(n,etiquette_new,[0],[],[etiquette_new],i+1)
151| S,A,E=ajout_sous_arbre(T,t,p)
152| if joueur=="1":
153| for s in range(7,13):
154| billes=jeu[s]
155| if billes!=0:
156| jeu_new=[k for k in jeu]
157| jeu_new[s]=0
158| for l in range(1,billes+1):
159| jeu_new[(s+l)%14]+=1
160| if (s+billes)%14!=13:
161| joueur_new="0"
162| else:
163| joueur_new="1"
164| if jeu_new[(s+billes)%14]==1 and 7<=(s+billes)%14<=12 :
165| billes_recup=jeu_new[12-(s+billes)%14]
166| jeu_new[12-(s+billes)%14]=0
167| jeu_new[13]+=billes_recup
168| etiquette_new=jeu_en_etiquette((joueur_new,jeu_new))
169| T=S,A,E
170| t=graphemancala_rec(n,etiquette_new,[0],[],[etiquette_new],i+1)
171| S,A,E=ajout_sous_arbre(T,t,p)

5

172| return S,A,E
173|
174|
175|
176| graphemancala=graphemancala_ite #je choisis quelle fonction j'utilise pour la suite
177|
178|
179|
180| ## Q5
181|
182| def sommets_controlés(S,A,E):
183| cont=[]
184| for k in range(len(E)):
185| if E[k][0]=="0":
186| cont.append(k)
187| return cont
188|
189|
190|
191| ## Q6
192| def valeur(etiquette):
193| joueur,jeu=etiquette_en_jeu(etiquette)
194| if jeu[0:6]==[0,0,0,0,0,0] or jeu[7:13]==[0,0,0,0,0,0]:
195| return jeu[6]+sum(jeu[0:6])-jeu[13]-sum(jeu[7:13])
196| else:
197| return jeu[6]-jeu[13]
198|
199|
200|
201|
202| ## Q7
203|
204| def marq_et_prop(x,value,compt,suc,pred,S0,F):
205| """
206| A REMPLIR

6

207| """
208| if x in S0 and x not in F:
209| value[x]=max([value[s] for s in suc[x]])
210| elif x not in S0 and x not in F :
211| value[x]=min([value[s] for s in suc[x]])
212| for u in pred[x]:
213| compt[u]=compt[u]-1
214| if compt[u]==0:
215| value,compt=marq_et_prop(u,value,compt,suc,pred,S0,F)
216| return value,compt
217|
218|
219|
220|
221| def predsuccesseur(S,A):
222| """
223| La fonction prend en paramètres :
224| S: une liste d'entiers, qui correspond aux sommets d'un graphe
225| A: une liste de tuples d'entiers (i,j), qui correspondent aux arêtes d'un graphe
226|
227| La fonction renvoie un tuple contenant 4 listes:
228| suc: une liste de listes, où chaque sous-liste contient les successeurs d'un sommet de S
229| nbsuc: une liste contenant le nombre de successeurs pour chaque sommet de S
230| pred: une liste de listes, où chaque sous-liste contient les prédécesseurs d'un sommet de S
231| nbpred: une liste contenant le nombre de prédécesseurs pour chaque sommet de S.
232| En utilisant les informations fournies par S et A, cette fonction permet de construire les
listes des successeurs et prédécesseurs pour chaque sommet du graphe, ainsi que le nombre de successeurs
et prédécesseurs pour chaque sommet.
233| """
234| suc=[[] for i in S]
235| nbsuc=[0 for i in S]
236| pred=[[] for i in S]
237| nbpred=[0 for i in S]
238| for (i,j) in A:
239| suc[i].append(j)

7

240| pred[j].append(i)
241| nbpred[j]+=1
242| nbsuc[i]+=1
243| return suc,nbsuc,pred,nbpred
244|
245|
246|
247|
248| def minimax(S:list,A:list,E:list,S0:list,valeur)->list:
249| '''
250| A REMPLIR
251| '''
252| value=["" for i in S]
253| suc,nbsuc,pred,nbpred=predsuccesseur(S,A)
254| F=[]
255| for k in range(len(nbsuc)):
256| if nbsuc[k]==0:
257| F.append(k)
258| for i in range(len(F)):
259| value[F[i]]=valeur(E[F[i]])
260| compt=nbsuc
261| for x in F:
262| value,compt=marq_et_prop(x,value,compt,suc,pred,S0,F)
263| L=[]
264| for k in suc[0]:
265| if value[k]==value[0]:
266| L.append(k)
267| return value, E[rd.choice(L)]
268|
269|
270|
271|
272|
273|
274|

8

275|
276|
277| ## Q8
278|
279| def jouer(etiquette):
280| billes=-1
281| while billes<=0:
282| if billes==0:
283| print("mauvaise case, il n'y a plus de bille dans celle-ci ou c'est une case non
valide")
284| s=input("quelle case jouée : ")
285| s=int(s)
286| if s>5:
287| billes=0
288| else:
289| joueur,jeu=etiquette_en_jeu(etiquette)
290| billes=jeu[s]
291| jeu_new=[k for k in jeu]
292| jeu_new[s]=0
293| for l in range(1,billes+1):
294| jeu_new[(s+l)%14]+=1
295| if (s+billes)%14!=6:
296| joueur_new="1"
297| else:
298| joueur_new="0"
299| if jeu_new[(s+billes)%14]==1 and 0<=(s+billes)%14<=5:
300| billes_recup=jeu_new[12-(s+billes)%14]
301| jeu_new[12-(s+billes)%14]=0
302| jeu_new[6]+=billes_recup
303| etiquette_new=jeu_en_etiquette((joueur_new,jeu_new))
304| return etiquette_new
305|
306|
307| ## Q9
308|

9

309| def game(etiquette='0|4,4,4,4,4,4,0,4,4,4,4,4,4,0'):
310| affichage(etiquette)
311| while not terminaux(etiquette):
312| if etiquette[0]=='0':
313| etiquette=jouer(etiquette)
314| affichage(etiquette)
315| else:
316| print("Vador réfléchit")
317| S,A,E=graphemancala(6,etiquette)
318| v,etiquette=minimax(S,A,E,sommets_controlés(S,A,E),valeur)
319| print("Vador joue:")
320| affichage(etiquette)
321| print("évaluation de l'état de la partie par le seigneur du mal : ",v[0])
322| note=valeur(etiquette)
323| if note >0:
324| print("vous avez gagné!")
325| elif note==0:
326| print("match nul")
327| else:
328| print("vous avez perdu!")
329|
330|
331|
332|

10

