L'étude porte sur un télésiège installé dans une station alpine. Sur ce télésiège, la gare motrice est en amont et la gare en aval permet de tendre le câble. Ceci est illustré sur la Figure 1.

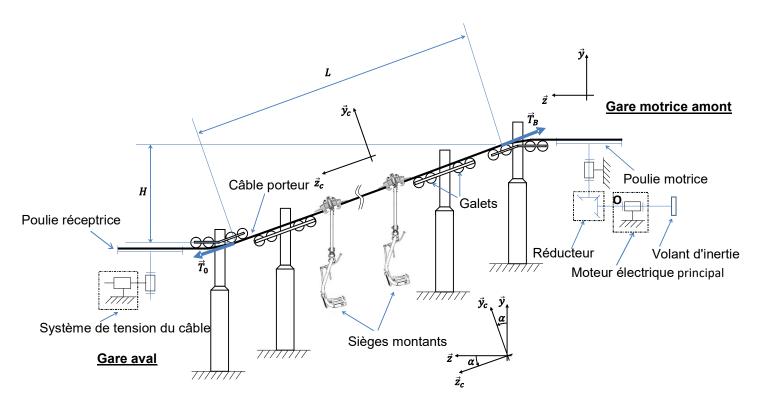


Figure 1 Situation des deux gares et des deux poulies

Tableau 1 caractéristiques de l'ensemble

Eléments	Caractéristiques et notations
Télésiège TSD6	Dénivelé : H= 364 m
	Longueur de câble à la montée : L= 1668 m
	Longueur de câble à la descente: L= 1668 m
	Nombre de pylônes : 14
Moteur électrique principal LAKC 4355C	Couple moteur : C _m
	Inertie arbre moteur : I _{am} = 17,3 kg.m²
	Vitesse de rotation : ω _m
Volant d'inertie	Inertie: I _v = 20 kg.m ²
	Vitesse de rotation : ω _m
Réducteur principal	Rendement : η = 1
	Inertie équivalente ramenée à l'arbre moteur : I _r = 4 kg.m²
	Rapport de réduction : $r = \omega_m/\omega_p = 59,1$
Poulie motrice	Inertie : I _{pm} = 16108 kg.m ²
	Rayon: R_p = 2,45 m Vitesse de rotation : ω_p
Poulie réceptrice	Inertie:I _{pr} = 14134 kg.m²
	Rayon: $R_p = 2,45 \text{ m}$
	Vitesse de rotation : ω _p
Câble	Masse linéique : $\mu_c = 8 \text{ kg.m}^{-1}$
	Vitesse : v
	Vitesse consigne d'exploitation : v _c = 5,5 m.s ⁻¹
Siège	Capacité : N _p = 6 personnes
	Distance moyenne entre deux sièges : d= 36 m
	Masse à vide : m _v = 530 kg
	Masse de 6 personnes : m _{6p} = 480 kg

Lycée G. Monod SII MP

Hypothèses

- On se place dans le cas de charge suivant :
 - à la montée 100% des sièges transportent 6 personnes ;
 - à la descente 30% des sièges transportent 6 personnes.
- Les masses du câble, des sièges et des personnes transportées seront uniformément réparties le long du câble, ainsi μ_m sera la masse linéique moyenne à la montée et μ_d sera la masse linéique moyenne à la descente.
- **Question 1.** Pour le cas de charge étudié, donner l'expression de la masse linéique moyenne à la montée μ_m en fonction de μ_c , m_v , m_{6p} et d, donnés dans le tableau 1. Donner l'expression de la masse linéique moyenne à la descente μ_d en fonction de L, μ_c , m_v , m_{6p} et d. Effectuer les applications numériques.

Dans la suite, on étudiera l'ensemble des pièces mobiles du système contribuant majoritairement à l'inertie équivalente : E = {arbre moteur, volant d'inertie, pièces mobiles du réducteur, poulie motrice, poulie réceptrice, câble à la montée, câble à la descente, sièges, skieurs}.

Question 2. Donner l'expression de l'énergie cinétique galiléenne de l'ensemble E. En déduire l'expression de l'inertie équivalente I_{eq} de l'ensemble E ramenée sur l'arbre moteur en fonction de μ_m , μ_d et des différentes grandeurs définies dans le tableau 1. Effectuer l'application numérique avec μ_m =36 kg/m et μ_d =27 kg/m.

Modélisation des actions mécaniques sur l'ensemble E

- Sur la partie du câble montant de longueur L et de pente moyenne α (voir Figure 1), on considérera les actions mécaniques suivantes :
 - le poids de l'ensemble (câble, sièges, skieurs) de masse linéique μ_m;
 - la résultante des actions des galets sur le câble qui se décompose en une composante normale et une composante tangentielle s'opposant au mouvement du câble de module. f_m =0.03. μ_m .g.L
- Sur la partie du câble descendant de longueur L et de pente moyenne α, on considérera les actions mécaniques suivantes :
 - le poids de l'ensemble (câble, sièges, skieurs) de masse linéique μ_d;
 - la résultante des actions des galets sur le câble qui se décompose en une composante normale et une tangentielle s'opposant au mouvement du câble de module f_d=0.03.μ_d.g.L.
 - Le couple moteur C_m
- L'accélération de la pesanteur sera prise égale à g = 9,81 m.s⁻².
- **Question 3.** On étudie le mécanisme constitué de l'ensemble E. Déterminer les puissances intérieures et extérieures à l'ensemble E.
- **Question 4.** En appliquant le théorème de l'énergie cinétique à l'ensemble E, donner sous la forme $I_{eq}\dot{\omega}_m = C_m(t) C_r(t)$, la relation liant l'accélération angulaire $\dot{\omega}_m$ au couple moteur C_m . On donnera l'expression de C_r en fonction des différentes caractéristiques définies dans le sujet. Effectuer l'application numérique.
- **Question 5.** Indiquer quels sont les facteurs variables qui pourraient diminuer la valeur du couple résistant C_r ?

Lycée G. Monod SII MP