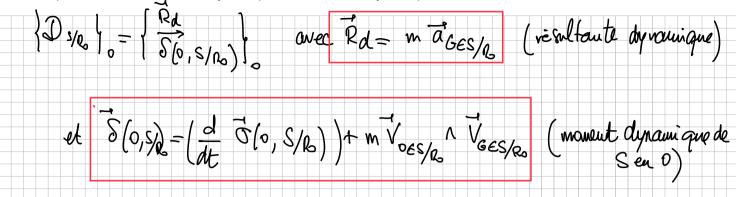
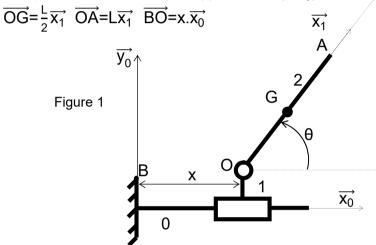

NOM: Prénom:


Q1. Ecrire l'opérateur d'inertie $\overline{I}(G,S)$ puis $\overline{I}(A,S)$ du cylindre S de masse M, de hauteur H et de rayon R. :

Q2. Donner la définition du torseur cinétique du solide S par rapport au repère R₀, écrit au point O. Vous détaillerez l'expression de la résultante cinétique et du moment cinétique.


Texpression de la resultante cinetique et du montent cinetique. $\begin{cases}
C \leq R_0 \\
C \leq R_0
\end{cases} = \begin{cases}
Resultante \\
C \leq R_0
\end{cases} = m \sqrt{Ges/R_0}$ $C = \frac{1}{G(s, s)} = \frac{$

Donner la définition du torseur dynamique du solide S par rapport au repère R₀, écrit au point O. Vous détaillerez Q3. l'expression de la résultante dynamique et du moment dynamique.

Soit le mécanisme décrit figure 1 :

On note I_{Gz} le moment d'inertie par rapport à l'axe $(G, \overline{Z_0})$.

Barre homogène de masse M de longueur L.

Coulisseau de masse négligée.

0: Bâti.

Objectif : Calculer le torseur dynamique $\left\{ \overrightarrow{R_d} \right\}_{\Omega}$.

On propose de calculer dans un premier temps la vitesse de G par rapport au solide 0, puis l'accélération de G par rapport au solide 0.

En déduire $\vec{\sigma}(G,2/0)$, puis $\vec{\delta}(G,2/0)$ et conclure en calculant $\vec{\delta}(O,2/0)$.

$$\overrightarrow{V}_{GE2J_0} = \frac{d}{dt} (\overrightarrow{R}_G) = \frac{d}{dt} (\overrightarrow{R}_G) + \frac{d}{dt} (\overrightarrow{O}_G) = \overrightarrow{X}_{X_0} + \frac{1}{2} \overrightarrow{\theta}_{X_1} + \frac$$