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Q1. Compléter le schéma-bloc fonctionnel du document réponse DR1 en indiquant dans les blocs le 
nom des composants (moteur, adaptateur, correcteur-variateur, capteur-conditionneur) et les 
paramètres qui transitent entre les blocs. 
 

 
 
Q2. Transformer les quatre équations dans le domaine de Laplace en supposant les conditions 
initiales nulles. 

𝑢௠(𝑡) = 𝑅. 𝑖(𝑡) + 𝐿
𝑑𝑖(𝑡)

𝑑𝑡
+ 𝑒(𝑡) → 𝑈௠(𝑝) = 𝑅. 𝐼(𝑝) + 𝐿. 𝑝. 𝐼(𝑝) + 𝐸(𝑝)  

 𝐽
𝑑𝜔(𝑡)

𝑑𝑡
= 𝑐௠(𝑡) + 𝑐௥(𝑡) → 𝐽. 𝑝. Ω(𝑝) = 𝐶௠(𝑝) + 𝐶௥(𝑝) 

𝑐௠(𝑡) = 𝑘௖ . 𝑖(𝑡) → 𝐶௠(𝑝) = 𝑘௖ . 𝐼(𝑝) 
𝑒(𝑡) = 𝐾௘ . 𝜔(𝑡) → 𝐸(𝑝) = 𝐾௘ . Ω(𝑡) 

 
Q3. En supposant le couple résistant nul, 𝑐௥(𝑡) = 0, donner la forme canonique de la fonction de 
transfert 𝐻௠(𝑝) en fonction de 𝑅, 𝐿, 𝑘௘, 𝑘௖ et 𝐽. 

𝐻௠(𝑝) =
ஐ೘(௣)

௎೘(௣)
=

భ

ೖ೐

ଵା
಻.೛(ೃశಽ.೛)

ೖ೎ೖ೐

  

On obtient une fonction de transfert du second ordre avec un gain statique de 1/ke 

 
Q4. Déterminer les valeurs numériques des durées T1 et T2 définies sur le document réponse DR2. 

𝑇ଵ =
ଵ

ହ଴.ହ଴଴଴
= 4. 10ି଺𝑠    et 𝑇ଶ = భ்

ସ
= 10ି଺𝑠  

 
 
  

Correcteur- 
Variateur 

Moteur Adaptateur 

Capteur-
conditionneur 

Ucons(t) 
ε(t) 

Umes(t) 

Um(t) 
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Q4. Pour chaque courbe de la figure 4, préciser, en le justifiant, si la valeur de 𝐾௜ est nulle ou non 
Le correcteur 𝐻௖௢௥(𝑝) = 𝐾௣ +

௄೔

௣
 est un correcteur proportionnel intégral 

Courbes 1 et 2 : Ki nul car erreur statique non nulle 
Courbe 3 : Ki non nul car erreur statique nulle 
 
Q5. Pour les courbes (1) et (2), préciser, en le justifiant, la simulation qui est associée à la plus grande 
valeur de 𝐾௣. 
L’augmentation du gain du correcteur proportionnel provoque la diminution de l’erreur statique. La 
courbe 2 est donc associée à une valeur de Kp plus grande que celle de la courbe 1. 
 
Q6. Déterminer les valeurs associées aux quatre critères de performances de l’exigence 1.2.2.1. 
Conclure sur le correcteur à adopter. 

Courbe 1 
 
 
 
 
 
 
 
 
 
 
 
 

Erreur statique : 2450 tr/min ≠0 : non conforme  
Stabilité : entrée bornée / sortie bornée : conforme 
Tr5%=0.016s <0.5s : conforme 
1er dépassement : 45%>20% : non conforme 

Courbe 2 
 
 
 
 
 
 
 
 
 
 
 

 
Erreur statique : 900 tr/min ≠0 : non conforme  
Stabilité : entrée bornée / sortie bornée : conforme 
Tr5%=0.018s <0.5s : conforme 
1er dépassement : 59%>20% : non conforme 

 
 

Courbe 3 
 
 
 
 
 
 
 
 
 
 
 

Erreur statique : 0 tr/min :  conforme  
Stabilité : entrée bornée / sortie bornée : conforme 
Tr5%=0.048s  < 0.5s : conforme 
1er dépassement : 16% < 20% : conforme 

 

 
La courbe 3 permet de respecter  l’exigence 1.2.2.1, il faut donc choisir un correcteur proportionnel 
intégral. 
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Q7. Déterminer la relation entre les paramètres angulaires𝜃ଷଶ(𝑡), 𝜃ସଷ(𝑡) et 𝜃ହସ(𝑡). 
 
 
 
 
 
 
 
 
 
 
A partir des figures planes de calcul, on a directement : 𝜃ହସ(𝑡) + 𝜃ସଷ(𝑡) + 𝜃ଷଶ(𝑡) = 0  
 
Q8. À l’aide d’une fermeture géométrique, déterminer la relation entre le paramètre 𝜆(𝑡), l’angle 
𝜃ଷଶ(𝑡) et les données géométriques du système. 
On réalise une fermeture géométrique entre les points A, B et C. 
𝐴𝐵ሬሬሬሬሬ⃗ + 𝐵𝐶ሬሬሬሬሬ⃗  + 𝐶𝐴ሬሬሬሬሬ⃗ = 0ሬ⃗  𝐿ଷ𝑧ଷ + 𝐿ସ𝑧ସ − 𝜆𝑧ଶ = 0ሬ⃗    
En projection sur 𝑥⃗ଶ : 
 𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ + 𝐿ସ𝑠𝑖𝑛𝜃ସଷ = 0 𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ = −𝐿ସ𝑠𝑖𝑛𝜃ସଷ  𝑠𝑖𝑛𝜃ସଷ = −

௅య

௅ర
𝑠𝑖𝑛𝜃ଷଶ 

𝑠𝑖𝑛ଶ𝜃ସଷ = ቀ
௅య

௅ర
𝑠𝑖𝑛𝜃ଷଶቁ

ଶ
 𝑐𝑜𝑠ଶ𝜃ସଷ = 1 − ቀ

௅య

௅ర
𝑠𝑖𝑛𝜃ଷଶቁ

ଶ
 

 cos𝜃ସଷ = ±ට1 − ቀ
௅య

௅ర
𝑠𝑖𝑛𝜃ଷଶቁ

ଶ
 (avec L3<L4) 

En projection sur 𝑧ଶ  
𝐿ଷ𝑐𝑜𝑠𝜃ଷଶ + 𝐿ସ𝑐𝑜𝑠𝜃ସଷ − 𝜆 = 0  𝜆 = 𝐿ଷ𝑐𝑜𝑠𝜃ଷଶ + 𝐿ସ𝑐𝑜𝑠𝜃ସଷ  
 

𝜆 = 𝐿ଷ𝑐𝑜𝑠𝜃ଷଶ + 𝐿ସට1 − ቀ
௅య

௅ర
𝑠𝑖𝑛𝜃ଷଶቁ

ଶ
  ou  𝜆 = 𝐿ଷ𝑐𝑜𝑠𝜃ଷଶ − 𝐿ସට1 − ቀ

௅య

௅ర
𝑠𝑖𝑛𝜃ଷଶቁ

ଶ
 

D’après le schéma cinématique et le paramétrage λ doit être positif, on en déduit :   

𝜆 = 𝐿ଷ𝑐𝑜𝑠𝜃ଷଶ + 𝐿ସට1 − ቀ
௅య

௅ర
𝑠𝑖𝑛𝜃ଷଶቁ

ଶ
  

 
Q9. En déduire l’expression littérale de l’amplitude des oscillations de la lame, notée 𝛥𝑧. Faire 
l’application numérique et conclure sur le respect de l’exigence 1.2.2.3. 
Δ𝑧 = 𝜆௠௔௫ − 𝜆௠௜௡=𝐿ଷ + 𝐿ସ − (−𝐿ଷ + 𝐿ସ) = 2𝐿ଷ Δ𝑧 = 2𝐿ଷ  
(Ce que l’on peut trouver directement par lecture du schéma cinématique) 
 
Application numérique : Δ𝑧 = 2.12,5 = 25 𝑚𝑚 > 20 𝑚𝑚 
L’exigence 1 .2.2.3 est respectée 
 

Q10. Calculer le rapport ቀ௅ర

௅య
 ቁ

ଶ
 et le comparer à la valeur 1. Montrer alors que la loi obtenue à la 

question Q17 peut se mettre sous la forme  𝜆(𝑡) = 𝐿ଷ 𝑐𝑜𝑠 𝜃ଷଶ(𝑡) + 𝐿ସ (t). 

Numériquement le rapport ቀ௅ర

௅య
 ቁ

ଶ
= ቀ

଼଴

ଵଶ.ହ
ቁ

ଶ
= 40,9 ≫ 1. 

L’expression de la question 17 peut donc s’écrire : 𝜆 = 𝐿ଷ𝑐𝑜𝑠𝜃ଷଶ + 𝐿ସ 
 
Q11. Conclure sur l’adoption de la loi approximée dans la suite de l’étude 
Les valeurs maximales et minimales sont identiques pour la position 
théorique et pour la position approximée. 

θ34 
θ32 θ54 

xሬ⃗ ଶ xሬ⃗ ଷ 
xሬ⃗ ଶ xሬ⃗ ସ 

xሬ⃗ ସ 

z⃗ଶ 

z⃗ଶ 

z⃗ଷ 

z⃗ସ 

z⃗ସ 
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L’écart  maximal  vaut environ 1/25 soit 4 %. On peut donc valider l’approximation pour la position 
 

 
Q12. Déterminer l’expression littérale de 𝜆̇(𝑡) à partir du modèle simplifié de  𝜆(𝑡). 

On a directement : 𝜆̇(𝑡) = −𝜃̇ଷଶ𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ = −𝜔ଷଶ𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ  
 

Q13. La simplification de la loi en vitesse permet-elle de valider l’exigence 1.2.2.4. ? 
La valeur maximale théorique est de 4m/s. 
La valeur maximale du système simplifié est de 3.9m/s. 
L’exigence  1.2.2.4 impose 4m/s ± 5% soit 3.8𝑚/𝑠 < 𝜆̇ < 4.2𝑚/𝑠 
L’exigence 1.2.2.4 est donc respectée avec le modèle simplifié. 
 
Q14. Durant la phase de coupe, déterminer les valeurs moyenne, maximale et minimale de l’effort de 
coupe 
 

 
Si on raisonne en norme :  

Valeur maximale: 162.5N  Valeur minimale : 140N  Valeur moyenne : 150 N 
 
Q15. Conclure sur la validation de l’exigence 1.2.1.1. Justifier 
 

max − min

moy
=

162.5 − 140

150
= 15% 

L’effort de coupe varie donc de ±7.5% < ±10% par rapport à la valeur moyenne, l’exigence 1.2.1.1 est 
respectée  
 
Q16. Déterminer l’énergie cinétique 𝑇௜/ℛబ

 par rapport au bâti 0 pour chaque solide 𝑖 ∈ [3, 4, 5]. 
Tସ/ୖబ

= 0 (Masse et inertie du solide 4 négligées) 

Tହ/ୖబ
=

ଵ

ଶ
Mହ(Vୟ

ଶ + λ̇ଶ) (5 à un mouvement de translation rectiligne) 

Tଷ/ୖబ
=

1

2
MଷVୟ

ଶ +
1

2
Jଷωଷଶ

ଶ  
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Q17. En déduire l’énergie cinétique de l’ensemble 𝑆 = {3, 4, 5} par rapport au bâti 0, que vous 
mettrez sous la forme 𝑇ௌ/ℛబ

=
ଵ

ଶ
𝐽௘௤(𝜃ଷଶ)𝜔ଷଶ

ଶ +
ଵ

ଶ
𝑀௘௤𝑉௔

ଶ . Préciser les expressions littérales de 
𝐽௘௤(𝜃ଷଶ) et 𝑀௘௤. 
L’énergie de l’ensemble est la somme des énergies cinétiques 
𝑇ௌ/ℛబ

= 𝑇ଷ/ℛబ
+ 𝑇ସ/ℛబ

+ 𝑇ହ/ℛబ
 

𝑇ௌ/ℛబ
=  

1

2
M3Va

2 +
1

2
J
3
ω32

2   +
1

2
M5(Va

2 + λ̇
2
) avec 𝜆̇(𝑡) = −𝜔ଷଶ𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ 

𝑇ௌ/ℛబ
=  

1

2
M3Va

2 +
1

2
J
3

ω32
2   +

1

2
M5(Va

2 + (𝜔ଷଶ𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ)2) 

𝑇ௌ/ℛబ
=  

1

2
(M3+M5)V

a
2 +

1

2
(J

3
+M5(𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ)2)ω

32

2
  =

1

2
𝑀௘௤𝑉௔

ଶ +
1

2
𝐽௘௤(𝜃ଷଶ)𝜔ଷଶ

ଶ  

Avec 𝐽௘௤ = J
3
+M5(𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ)2)  (attention Jeq n’est pas une constante) et 𝑀௘௤ = (M3+M5)  

 
Q18. Déterminer les expressions littérales des puissances intérieures 𝑃௜௡௧ et extérieures au système 𝑆 
par rapport au bâti 0,𝑃௘௫௧→ௌ/ℛబ

. 
Puissances intérieures  
Les liaisons sont supposées parfaites : Pint(S) = 0 
 
Puissances extérieures 
Liaisons avec le bâti supposées parfaites :   𝑃଴→ௌ/ோబ

= 0 
𝑃௠௢௧௘௨௥→ௌ/ோబ

= 𝐶௠𝜔ଷଶ 
𝑃௣௘௦௔௡௧௘௨௥→ௌ/ோబ

= 0 (action de la pesanteur négligée) 

𝑃௠௔௧௘௟௔௦→௟௔௠௘/ோబ
= {𝑇௠௔௧௘௟௔௦→௟௔௠௘} ⊗ ൛𝑉௟௔௠௘/ோబ

ൟ = ൜
𝐹௔. 𝑦଴ሬሬሬሬ⃗ + 𝐹௖. 𝑧଴ሬሬሬ⃗

0ሬ⃗
 

஼

⊗ ቊ
0ሬ⃗

𝑉௔ . 𝑦଴ሬሬሬሬ⃗ + 𝜆̇(𝑡)𝑧଴ሬሬሬ⃗
 

஼

= 𝐹௔𝑉௔ + 𝜆̇(𝑡)𝐹௖ 

On en déduit : 𝑃௘௫௧→ௌ/ℛబ
= 𝐶௠𝜔ଷଶ + 𝐹௔𝑉௔ + 𝜆̇(𝑡)𝐹௖ = 𝐶௠𝜔ଷଶ + 𝐹௔𝑉௔ − 𝜔ଷଶ𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ𝐹௖  

 
Q19. Énoncer le théorème de l’énergie cinétique et déterminer l’expression littérale du couple moteur 
𝐶௠(𝑡). 

Le théorème de l’énergie cinétique appliqué à S s’écrit : 
ௗா೎(ௌ/ோబ)

ௗ௧
= 𝑃௜௡௧(𝑆) + 𝑃௘௫௧→ௌ/ℛబ

 
ௗ

ௗ௧
 ቂ 

1

2
M3Va

2 +
1

2
J
3

ω32
2   +

1

2
M5(Va

2 + λ̇
2
)ቃ=𝐶௠𝜔ଷଶ + 𝐹௔𝑉௔ + 𝜆̇(𝑡)𝐹௖ 

Jଷω̇ଷଶωଷଶ + Mହλ̈λ̇=𝐶௠𝜔ଷଶ + 𝐹௔𝑉௔ + 𝜆̇(𝑡)𝐹௖ 𝐶௠ =
୎యன̇యమனయమା୑ఱ஛̈஛̇ିிೌ ௏ೌ ିఒ̇ி೎

ఠయమ
 

 

avec 𝜆̇(𝑡) = −𝜔ଷଶ𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ et 𝜆̈(𝑡) = −𝜔̇ଷଶ𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ − 𝜔ଷଶ
ଶ 𝐿ଷ𝑐𝑜𝑠𝜃ଷଶ 

 
Q20. Montrer qu’en régime permanent൫𝜃̇ଷଶ = 𝑐𝑡𝑒൯, l’expression du couple moteur est : 

𝐶௠ = ൣ𝐹௖ + 𝑀ହ𝐿ଷ𝜃̇ଷଶ
ଶ 𝑐𝑜𝑠 𝜃ଷଶ൧𝐿ଷ 𝑠𝑖𝑛 𝜃ଷଶ −

𝐹௔𝑉௔

𝜃̇ଷଶ

 

En régime permanent :  𝜃̇ଷଶ = 𝑐𝑡𝑒, et  ω̇ଷଶ = 0 
 

 𝐶௠ =
୑ఱ஛̈஛̇ିிೌ ௏ೌ ିఒ̇ி೎

ఠయమ
   𝜆̇(𝑡) = −𝜔ଷଶ𝐿ଷ𝑠𝑖𝑛𝜃ଷଶ  𝜆̈(𝑡) = −𝜔ଷଶ

ଶ 𝐿ଷ𝑐𝑜𝑠𝜃ଷଶ 

 

𝐶௠ =
Mହ(−𝜔32𝐿3𝑠𝑖𝑛𝜃32)(−𝜔32

2 𝐿3𝑐𝑜𝑠𝜃32) − 𝐹௔𝑉௔ + 𝜔32𝐿3𝑠𝑖𝑛𝜃32𝐹௖

𝜔32
 

𝐶௠ = Mହ(−𝐿3𝑠𝑖𝑛𝜃32)(−𝜔32
2 𝐿3𝑐𝑜𝑠𝜃32) −

𝐹௔𝑉௔

𝜔32
+ 𝐿3𝑠𝑖𝑛𝜃32𝐹௖ 

𝐶௠ = ൫Mହ𝜔32
2 𝐿3𝑐𝑜𝑠𝜃32 + 𝐹௖൯𝐿3𝑠𝑖𝑛𝜃32−

𝐹௔𝑉௔

𝜔32
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Q21. Pourquoi le couple moteur n’est-il pas constant en régime permanent ? Quelle en est la 
conséquence sur le comportement du système ? 
Le coulisseau a un mouvement  de va et vient donc même en régime permanent (vitesse de rotation constante du 
moteur) l’accélération du coulisseau n’est pas constante.  
De plus la pesanteur sur le coulisseau est motrice durant la phase de descente et résistante durant la phase de 
montée. 
Ces 2 phénomènes sont à l’origine du couple moteur variable en régime permanent et vont provoquer des 
vibrations.  
 

Q22. Déterminer l’expression des vecteurs vitesses 𝑉ሬ⃗ (𝐺ଷ ∈ 3/2) et 𝑉ሬ⃗ (𝐺ହ ∈ 5/2) en fonction de 𝜆̇, 𝜃̇ଷଶ 
et des données géométriques. 

𝑉ሬ⃗ (𝐺ଷ ∈ 3/2) = 𝑉ሬ⃗ (𝐴 ∈ 3/2) + 𝐺ଷ𝐴ሬሬሬሬሬሬሬ⃗ ∧ Ωሬሬ⃗ (3/2 = −𝑎ଷ𝑧ଷ ∧  𝜔ଷଶ𝑦⃗ଷ  

𝑉ሬ⃗ (𝐺ଷ ∈ 3/2) = 𝑎ଷ𝜔ଷଶ𝑥⃗ଷ  

𝑉ሬ⃗ (𝐺ହ ∈ 5/2) = 𝜆̇𝑧ଶ  
 
Q23. En déduire l’expression, dans la base ℬଶ = ( 𝑥ଶሬሬሬሬ⃗ , 𝑦ଶሬሬሬሬ⃗ , 𝑧ଶሬሬሬ⃗ ), de la résultante dynamique de 
l’ensemble 𝑆 = {3, 4, 5} dans le référentiel lié à la table, notée 𝑅ௗ

ሬሬሬሬ⃗ (𝑆/0). 
La résultante dynamique de l’ensemble est la somme des résultantes dynamiques :  
𝑅ௗ
ሬሬሬሬ⃗ (𝑆/0) = 𝑅ௗ

ሬሬሬሬ⃗ (3/0) + 𝑅ௗ
ሬሬሬሬ⃗ (4/0) + 𝑅ௗ

ሬሬሬሬ⃗ (5/0) 
𝑅ௗ
ሬሬሬሬ⃗ (4/0) = 0ሬ⃗  (masse et inertie de 4 négligée) 
𝑅ௗ
ሬሬሬሬ⃗ (5/0) = 𝑀ହ𝜆̈𝑧ଶ 

𝑅ௗ
ሬሬሬሬ⃗ (3/0) = 𝑀ଷΓ⃗(Gଷ ∈ 3/0) = 𝑀ଷ  ቆ𝑎ଷ𝜔̇ଷଶ𝑥⃗ଷ + 𝑎ଷ𝜔ଷଶ ቈ

𝑑𝑥⃗ଷ

𝑑𝑡
቉

଴

ቇ = −𝑀ଷ𝑎ଷ𝜔ଷଶ
ଶ 𝑧ଷ 

𝑅ௗ
ሬሬሬሬ⃗ (𝑆/0) = 𝑀ହ𝜆̈𝑧ଶ − 𝑀ଷ𝑎ଷ𝜔ଷଶ

ଶ 𝑧ଷ 𝑅ௗ
ሬሬሬሬ⃗ (𝑆/0) = 𝑀ହ𝜆̈𝑧ଶ − 𝑀ଷ𝑎ଷ𝜔ଷଶ

ଶ (𝑐𝑜𝑠𝜃ଷଶ𝑧ଶ + 𝑠𝑖𝑛𝜃ଷଶ𝑥⃗ଶ)

  
Q24. Déterminer l’expression du maximum de chacune des composantes de la résultante dynamique 

𝑅ௗ
ሬሬሬሬ⃗ (𝑆/0) sur 𝑥ଶሬሬሬሬ⃗  et 𝑧ଶሬሬሬ⃗ . Faire l’application numérique. 

𝑅ௗ
ሬሬሬሬ⃗ (𝑆/0). 𝑥⃗ଶ =  −𝑀ଷ𝑎ଷ𝜔ଷଶ

ଶ  𝑠𝑖𝑛𝜃ଷଶ la valeur maximale est donnée pour  𝑠𝑖𝑛𝜃ଷଶ = −1 
 

൫𝑅ௗ
ሬሬሬሬ⃗ (𝑆/0). 𝑥⃗ଶ൯

௠௔௫
= 𝑀ଷ𝑎ଷ𝜔ଷଶ

ଶ   ൫𝑅ௗ
ሬሬሬሬ⃗ (𝑆/0). 𝑥⃗ଶ൯

௠௔௫
= 𝑀ଷ𝑎ଷ𝜔ଷଶ

ଶ  

Application numérique : ൫𝑅ௗ
ሬሬሬሬ⃗ (𝑆/0). 𝑥⃗ଶ൯

௠௔௫
= 0,35.0,5. 10ିଷ. ቀ

ଷ଴଴଴.ଶ.ଷ,ଵସ

଺଴
ቁ

ଶ
= 17𝑁 

 
𝑅ௗ
ሬሬሬሬ⃗ (𝑆/0). 𝑧ଶ = 𝑀ହ𝜆̈ − 𝑀ଷ𝑎ଷ𝜔ଷଶ

ଶ 𝑐𝑜𝑠𝜃ଷଶ = −𝑀ହ𝐿ଷ𝜔ଷଶ
ଶ 𝑐𝑜𝑠𝜃ଷଶ − 𝑀ଷ𝑎ଷ𝜔ଷଶ

ଶ 𝑐𝑜𝑠𝜃ଷଶ   
la valeur maximale est donnée pour 𝑐𝑜𝑠𝜃ଷଶ = −1 
 

൫𝑅ௗ
ሬሬሬሬ⃗ (𝑆/0). 𝑧ଶ൯

௠௔௫
= (𝑀ହ𝐿ଷ + 𝑀ଷ𝑎ଷ)𝜔ଷଶ

ଶ  

Application numérique : ൫𝑅ௗ
ሬሬሬሬ⃗ (𝑆/0). 𝑧ଶ൯

௠௔௫
= (0,1.0,0125 + 0,35.0,5. 10ିଷ). ቀ

ଷ଴଴଴.ଶ.ଷ,ଵସ

଺଴
ቁ

ଶ
= 140𝑁 

 
Q25. En comparant l’expression des deux maxima, identifier la pièce qui semble être à l’origine des 
vibrations. 
L’origine des vibrations est la pièce 5 
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Q26. Pour chacune des configurations et pour le sens de rotation du moteur donné, préciser le sens de 
rotation de la masse excentrée sur le document réponse DR5. 

 
 
 
Q27. Pour chacune des configurations, préciser si les vibrations verticales peuvent être supprimées. 
Justifier 
Pour supprimer les vibrations verticales il faut que les 2 masselottes soient en position haute ou basse en même 
temps. 
Les cas 1 et 3 permettent de supprimer les vibrations verticales 
Les cas 2 et 4 ne permettent pas de supprimer les vibrations verticales 
 
Q28. Quelle configuration faut-il retenir pour assurer le moins de vibrations dans le système de 
coupe ? Justifier. 
D’après la question précédente il faut choisir entre le cas 1 et le cas 3 pour supprimer les vibrations verticales 
Dans le cas 1 les masselottes sont du même coté (suivant 𝑥⃗଴) en même temps ce qui va provoquer des vibrations 
horizontales   
Seul le cas 3 permet de limiter les vibrations horizontales et verticales 
 
Q29. Déterminer les composantes suivant 𝑥ଶሬሬሬሬ⃗  et 𝑧ଶሬሬሬ⃗  de la résultante dynamique des masses excentrées 
dans le référentiel lié à la table. 
On pose 𝑂𝐺ప

ሬሬሬሬሬሬሬ⃗ = 𝑟𝑧௚ሬሬሬ⃗   
𝑉ሬ⃗ (𝐺௜ ∈ 𝑟𝑜𝑢𝑒/0) = 𝑟𝜃̇௜𝑥పሬሬሬ⃗  et Γ⃗(𝐺௜ ∈ 𝑟𝑜𝑢𝑒/0) = −𝑟𝜃̇௜

ଶ𝑧పሬሬ⃗   (rappel 𝜃̈௜ = 0) 
 
On en déduit pour la masse g : 𝑅ௗ

ሬሬሬሬ⃗ ൫𝑚௚/0൯ = −𝑚 𝑟𝜃̇௜
ଶ𝑧௚ሬሬሬ⃗ = − 𝑚𝑟𝜃̇௚

ଶ(𝑐𝑜𝑠𝜃௚𝑧ଶ + 𝑠𝑖𝑛𝜃௚𝑥⃗ଶ) 

On en déduit pour la masse d : 𝑅ௗ
ሬሬሬሬ⃗ (𝑚ௗ/0) = − 𝑚𝑟𝜃̇௜

ଶ𝑧ௗሬሬሬሬ⃗ = −𝑚 𝑟𝜃̇ௗ
ଶ(𝑐𝑜𝑠𝜃ௗ𝑧ଶ + 𝑠𝑖𝑛𝜃ௗ𝑥⃗ଶ) 

Sur 𝑥ଶሬሬሬሬ⃗  : 𝑅ௗ
ሬሬሬሬ⃗ ൫𝑚ௗ + 𝑚௚/0൯. 𝑥ଶሬሬሬሬ⃗ = − 𝑚𝑟𝜃̇௚

ଶ𝑠𝑖𝑛𝜃௚ − 𝑚 𝑟𝜃̇ௗ
ଶ𝑠𝑖𝑛𝜃ௗ  

Sur 𝑧ଶሬሬሬ⃗  : 𝑅ௗ
ሬሬሬሬ⃗ ൫𝑚ௗ + 𝑚௚/0൯. 𝑧ଶሬሬሬ⃗ = − 𝑚𝑟𝜃̇௚

ଶ𝑐𝑜𝑠𝜃௚ −  𝑚 𝑟𝜃̇ௗ
ଶ𝑐𝑜𝑠𝜃ௗ  
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Q30. En déduire la relation entre 𝜃ௗ et 𝜃௚ pour que les masses excentrées ne génèrent pas de 
vibration suivant 𝑥ଶሬሬሬሬ⃗ . 
Pour ne pas générer de vibration suivant 𝑥ଶሬሬሬሬ⃗ , on doit avoir 
 𝑅ௗ
ሬሬሬሬ⃗ ൫𝑚ௗ + 𝑚௚/0൯. 𝑥ଶሬሬሬሬ⃗ = − 𝑚𝑟𝜃̇௚

ଶ𝑠𝑖𝑛𝜃௚ − 𝑚 𝑟𝜃̇ௗ
ଶ𝑠𝑖𝑛𝜃ௗ=0 𝑠𝑖𝑛𝜃௚ +  𝑠𝑖𝑛𝜃ௗ = 0 

Mais on doit aussi avoir : 𝑐𝑜𝑠𝜃௚ =  𝑐𝑜𝑠𝜃ௗ 

On en déduit : 𝜃௚ =  −𝜃ௗ  

 
Q31. En déduire l’expression de la masse 𝑚 pour respecter l’exigence 1.2.2.2. Faire l’application 
numérique 
Sur 𝑥ଶሬሬሬሬ⃗ = 𝑥଴ሬሬሬሬ⃗  ,d’après la question précédente quelle que soit la valeur de m, à condition de choisir 
correctement les angles 𝜃ௗ et 𝜃௚. La résultante dynamique est nulle 
 
Mais il y a certainement  une coquille dans l’énoncé, l’exigence 1.2.2.2 doit plutôt s’écrire : « La 
résultante dynamique de l’ensemble de la tête de coupe doit être au maximum de 40N sur l’axe 𝑧଴ሬሬሬ⃗  » 
Dans ce cas : 
 − 𝑚𝑟𝜃̇௚

ଶ𝑐𝑜𝑠𝜃௚ −  𝑚 𝑟𝜃̇ௗ
ଶ𝑐𝑜𝑠𝜃ௗ + 140 = 0 (rappel  ൫𝑅ௗ

ሬሬሬሬ⃗ (𝑆/0). 𝑧ଶ൯
௠௔௫

= 140𝑁 (𝑞𝑢𝑒𝑠𝑡𝑖𝑜𝑛 34) 
 

2 𝑚𝑟𝜃̇௚
ଶ𝑐𝑜𝑠𝜃௚ = 140   𝑚 =

ଵସ଴

ଶ.௥.ఏ̇೒
మ  

 
Application numérique : 𝑚 =

ଵସ଴

ଶ.଴,଴଴଼.ቀ
యబబబ.మ.య,భర

లబ
ቁ

మ
.
=  0.089 𝑘𝑔 = 89𝑔  

 
Q32. D’après l’expression de la résultante dynamique de la question Q33, comment devrait évoluer 
l’effort de coupe en régime permanent en fonction de la vitesse de rotation du moteur ? 
Si on double la vitesse de rotation du moteur l’effort de coupe devrait être multiplié par 4 (la vitesse 
de rotation du moteur 𝜔ଷଶapparait au carré) 
 
Q33. Conclure sur l’utilité des masses excentrées mises en place sur la tête de coupe en version 
améliorée. 
D’après la figure 16 de l’énoncé l’effort de coupe moyen en norme pour le système amélioré est de 
80 N alors que la vitesse de rotation est de 6000 tr/min.  
Les masselottes d’équilibrage permettent donc de diviser par 8 l’effort de coupe  sur la version 
améliorée par rapport à la version initiale. 
 
Q34. Réaliser la synthèse de la démarche d’identification du phénomène vibratoire et la validation de 
la solution retenue en regard du cahier des charges. 
 
 


