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ELECTROMAG5 - Ondes
électromagnétique en interaction avec la

matière
Travaux dirigés

Exercice 1: Cavité électromagnétique ⋆

Une cavité vide sans pertes d’axe (Ox), de section S et de longueur L, est constituée
par l’association de deux miroirs métalliques parfaits confondus respectivement avec
les plans x = 0 et x = L. On suppose qu’à l’intérieur de la cavité, le champ électrique
d’une onde monochromatique polarisée selon #»e z a pour représentation complexe :

#»

E(x, t) = E1 exp [i(ωt− kx)] #»e z + E2 exp [i(ωt+ kx)] #»e z

On rappelle que la composante tangentielle du champ électrique doit obligatoirement
être nul sur une surface parfaitement conductrice.

1. Déterminer E2 en fonction de E1 , ainsi que l’expression kn des vecteurs d’onde
possibles. En déduire l’expression fn des fréquences autorisées pour l’onde totale
dans la cavité en fonction de L, c et de n ∈ N∗.

2. Établir l’expression du champ électrique total complexe
#»

En relatif à la fréquence
fn en fonction de E1 , n, x, t, L et c. De quel type d’onde s’agit-il ?

3. Montrer que le champ précédent présente des annulations permanentes en des
abscisses xp fixées. Donner la distance entre deux valeurs consécutives de xp en
fonction de L et n.

4. Obtenir le champ magnétique
#»

Bn relatif à la fréquence fn. Que peut-on en dire
pour les positions xp précédentes ?

5. Calculer l’énergie électrique Ee et l’énergie magnétique Em emmagasinées pour
un seul mode dans la cavité, en fonction du temps. Montrer qu’il y a échange
périodique entre énergie électrique et énergie magnétique d’un mode de cavité.
Déterminer la période T de ces échanges.

Exercice 2: Dispersion dans un monocristal de chlorure de sodium ⋆

La dispersion des ondes électromagnétiques dans un monocristal de NaCl est ca-

ractérisée par la relation de dispersion : k2 =
ω2

c2
εel

ω2
L − ω2

ω2
T − ω2

où εel est une constante

positive sans dimension, et ωL = 4,4× 1013 rad · s−1 et ωT = 2,8× 1013 rad · s−1.

1. Discuter, en fonction de la fréquence, la possibilité qu’a une onde
électromagnétique de se propager. Préciser pour chaque domaine de fréquences
la forme de l’onde.

2. On envoie sur le monocristal de NaCl une onde sous incidence normale. Que lui
arrive-t-il selon la valeur de sa fréquence ?

3. Tracer l’allure de la courbe k(ω) dans les domaines où k est réel.

4. Dans le domaine optique, ω2 ≫ ω2
L. Y a-t-il dispersion dans ce domaine ? Que

vaut la vitesse de phase de l’onde ? Une mesure expérimentale donne un indice de
réfraction n = 1, 55 pour λ = 600 nm. Que vaut la constante εel ?

Exercice 3: Onde électromagnétique dans un câble coaxial ⋆⋆

On étudie un guide d’onde constitué de deux armatures métalliques cylindriques co-
axiales, d’axe Oz et de rayons respectifs R1 et R2 > R1. Les régions r < R1 et r > R2

sont remplies de métal parfait (conductivité infinie). La région R1 < r < R2 est oc-
cupée par du vide. Dans cette zone vide, on peut propager une onde électromagnétique
dont le champ électrique s’écrit :

#»

E(r, θ, z, t) = f(r) cos(ωt− kz) #»e r avec f(R1) = E0 > 0

On utilisera au besoin un formulaire d’analyse vectorielle

1. A l’aide des équations de Maxwell, déterminer le champ électrique
#»

E dans la région
R1 < r < R2.

2. Déterminer le champ magnétique
#»

B de l’onde.

3. Établir la relation de dispersion pour l’onde envisagée. Commenter.

4. Déterminer l’expression du vecteur de Poynting. En déduire le flux d’énergie
moyenné dans le temps à travers une section transversale du câble.

5. Calculer la densité volumique d’énergie électromagnétique de l’onde, puis la
moyenner dans le temps.

6. En déduire la vitesse moyenne ve de propagation de l’énergie dans le câble.

Exercice 4: Effet de peau dans un conducteur réel ⋆⋆

Exercice donné à l’oral de CCINP, proche du cours, avec un bilan énergétique plus
original à la fin
On étudie la propagation d’une onde plane monochromatique dont le champ électrique
s’écrit, en complexes :

#»

E(M, t) = E0 exp(i(ωt− kz)) #»e x

où E0 est une constante réelle positive. Le domaine spectrale envisagé correspond à
des ondes centimétriques. Pour les applications numériques, on se placera dans le cas
du cuivre de conductivité γ = 6,0 × 107 S·m−1 en régime indépendant du temps.
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1. Caractériser cette onde avec des termes adaptés.

2. Quel est l’ordre de grandeur de la fréquence des ondes étudiées ? Comparer
les amplitudes des vecteurs densité de courant électrique de conduction et de
déplacement. Écrire la forme approchée des équations de Maxwell dans le milieu
métallique pour le cadre de notre étude.

3. Le métal occupe la zone z > 0. Établir la relation de dispersion en faisant intervenir
une distance caractéristique notée δ (épaisseur de peau). Donner l’expression du
champ électrique. Quelle est la signification de δ ?

4. Établir l’expression du champ magnétique
#»

B de l’onde. Les champs
#»

E et
#»

B sont-ils
en phase ?

5. Déterminer l’expression de la puissance, moyennée en temps, cédée au métal par
l’onde dans un volume cylindrique élémentaire, de section S perpendiculaire à
(Oz), dont les faces planes sont situées en z et z + dz.

6. La comparer au flux du vecteur moyen de Poynting à travers la surface délimitant
ce volume et vérifier le bilan énergétique local attendu.

Exercice 5: Réflexion sur un plan conducteur en mouvement ⋆⋆

Une plaque métallique parfaitement conductrice, plane et perpendiculaire à (Ox), se
déplace à la vitesse constante #»v = v #»e x dans un référentiel R galiléen (v > 0). Elle
cöıncide à l’instant t avec le plan d’équation x = vt. Une onde électromagnétique de
champ électrique

# »

Ei se réfléchit sur cette surface, le champ électrique de l’onde réfléchie
étant

#  »

Er. On suppose que :

# »

Ei = E0 cos
[
ωi

(
t− x

c

)]
#»e z et

#  »

Er = Er cos
[
ωr

(
t+

x

c

)]
#»e z

Pour exprimer la réflexion de l’onde et vérifier les conditions aux limites, il convient
d’étudier la réflexion dans le référentiel R’ dans lequel la plaque est immobile. On
indique que, dans la limite de la physique non relativiste (v ≪ c) admise pour la suite,
la transformation du champ électromagnétique par changement de référentiel galiléen
est :

#»

E ′ =
#»

E + #»ve ∧
#»

B et
#»

B′ =
#»

B

en notant (
#»

E,
#»

B) un champ électromagnétique dans le référentiel R et (
#»

E ′,
#»

B′) celui
correspondant dans le référentiel R’ de vitesse #»ve de translation par rapport à R.

1. Exprimer
# »

Bi en fonction de E0, c, ωi, t et x, puis exprimer
# »

Ei
′ en fonction de E0,

c, ωi, t, x et v

2. Exprimer
#  »

Er
′ en fonction Er, c, ωr, t, x et v.

3. À la surface de la plaque, le champ électrique total doit être orthogonal à la plaque.
En déduire l’expression de Er en fonction de E0, v, c, et celle de ωr en fonction
de ωi, v et c.

4. Soit R =
⟨ #  »

Πr⟩ · (− #»e x)

⟨ # »

Πi⟩ · #»e x

où ⟨ # »

Πi⟩ et ⟨ #  »

Πr⟩ sont les valeurs moyennes respectives

des vecteurs de Poynting des ondes incidente et réfléchie. Donner la signification
physique de R. Exprimer R en fonction de v et c. Comment expliquez-vous le fait
que R ̸= 1?

Exercice 6: Transparence d’un conducteur dans l’ultra-violet ⋆ ⋆ ⋆

Pour étudier la propagation d’ondes électromagnétiques dans un milieu conducteur,
on adopte un modèle de fluide d’électrons libres, de masse m, charge −e et densité
particulaire N0, pouvant se mouvoir sous l’effet du champ électromagnétique de l’onde
électromagnétique. Le comportement du fluide de charges de conduction est modélisé

par l’équation du mouvement : m
d #»v

dt
+

m

τ
#»v = −e

#»

E

1. Montrer qu’en régime permanent on peut écrire
#»
j = γ

#»

E en exprimant γ en
fonction de m, e, N0 et τ .

2. Estimer l’ordre de grandeur de τ pour un conducteur métallique. Évaluer la pul-

sation ωp =

√
N0e

2

mε0
pour un métal et la situer dans le spectre électromagnétique

(on prendra N0 ≈ 1029m−3).

3. Montrer qu’en régime sinusöıdal l’on peut définir, pour le milieu conducteur, une
conductivité complexe γ qui dépend de la pulsation ω du régime sinusöıdal envi-
sagé.

4. Préciser la relation de dispersion des ondes planes progressives monochromatiques
se propageant dans le milieu conducteur localement neutre avec un vecteur d’onde
complexe k #»e z. Définir un indice complexe n associé. On pose pour la suite n =
n1 − in2 avec n1 et n2 des réels positifs.

5. On s’intéresse maintenant à la propagation des ondes de fréquences pour lesquelles
le terme dissipatif de l’équation du mouvement est négligeable.

(a) Préciser l’expression simplifiée de l’indice n du milieu. Tracer les allures de

n1 et n2 en fonction de
ω

ωp
.

(b) On indique, pour le sodium, les courbes expérimentales fournies sur la figure
ci-dessous. Les commenter par comparaison à la théorie précédente. Quel est
le comportement du sodium dans l’U.V. lointain ?
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(c) Évaluer la pulsation plasma ωp, puis la densité numérique d’électrons libres
N0 du sodium. Commenter cette valeur sachant que la masse volumique µ
du sodium métallique, de masse molaire M = 23 g · mol−1, est µ = 0,97 ×
103 kg ·m−3.
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