TREUIL POUR DAMEUSE PRINOTH EVEREST

Pour satisfaire les usagers des pistes, les responsables des stations de ski entretiennent régulièrement leur domaine skiable. Ils utilisent en particulier une dameuse qui permet de remonter la neige que les skieurs font descendre et de l'aérer.

Figure 1 : description de la dameuse lors de l'entretien des pistes à forte pente

N	Exigence	Critère	Niveau
1	Permettre à la dameuse de se déplacer sur une piste à forte pente	Vitesse de la dameuse	5 km.h ⁻¹
		Variation de la vitesse	± 10%
		A-coup	aucun

Caractérisation partielle des Eléments du Milieu Extérieur			
Nom	Critère	Valeur	
Dameuse	Masse	12500kg	
Dameuse	Puissance	420kW	
Piste à forte pente	Pente maximum	50°	
i iste a forte pente	Longueur	< 1200m	

Figure 2 : extrait du Cahier des Charges Fonctionnel du treuil

Dans cette partie le problème est considéré comme plan et la figure 3 précise la modélisation retenue :

- $\left(O_0, \overrightarrow{x_0}, \overrightarrow{y_0}\right)$: repère fixe avec $\overrightarrow{y_0}$ vertical ascendant ;
- $(O_0, \overrightarrow{x_1}, \overrightarrow{y_1})$: repère lié à la piste avec $\overrightarrow{x_1}$ suivant la direction de la piste et $\alpha = (\overrightarrow{x_0}, \overrightarrow{x_1})$;
- G : centre de gravité de la dameuse avec $\overrightarrow{O_0G} = \lambda(t)\overrightarrow{x_1} + a\overrightarrow{y_1}$ et $\lambda(t)$: vitesse de la dameuse dont la valeur maximum est définie dans le cahier des charges fonctionnel ;
- L'action de la neige sur les chenilles est modélisée par un glisseur. Le coefficient de frottement est estimé à f = 0,65.

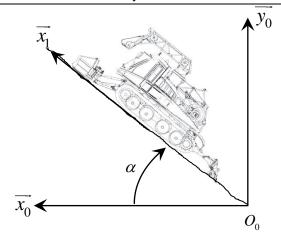


Figure 3 : paramétrage de la dameuse dans la pente

Etude dynamique de la dameuse.

Cette étude est faite dans la phase de vie considérée, la dameuse travaille donc dans une forte pente caractérisée par l'angle α (cf figure 3). Les actions mécaniques extérieures appliquées à la dameuse sont modélisées par :

- action de la neige sur les chenilles et la fraise : $\overrightarrow{F_{ch}} = F_{ch} \overrightarrow{x_1} + N_{ch} \overrightarrow{y_1}$;
- action résistante de la neige sur la lame : $\overline{F_{r\acute{e}sistante}} = -(F_{FS} + \mu V_A) \overrightarrow{x_1}$ avec V_A la vitesse d'avance de la dameuse, V_A pouvant varier légèrement dans la phase de vie considérée ;
- action de la pesanteur sur la dameuse : $\overrightarrow{P} = -Mg\overrightarrow{y_0}$ avec M la masse de la dameuse et g l'accélération de la pesanteur ;
- action du câble sur la dameuse: $\vec{T} = T\vec{x_1}$.
- Q1 Déterminer l'équation issue de la projection du théorème de la résultante dynamique sur $\overrightarrow{x_1}$ appliqué à la dameuse.

Analyse de la tension dans le câble.

Dans un premier temps, le treuil est modélisé par un câble (C) qui s'enroule sur un tambour (T) ; celui-ci est en liaison glissière à mouvement amorti avec le châssis de la dameuse comme le montre la figure 4 ci-dessous.

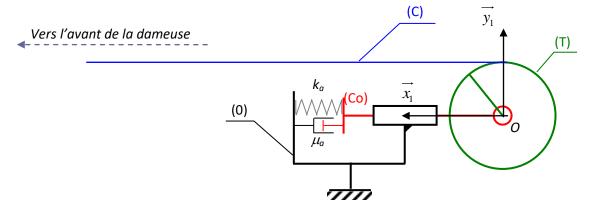
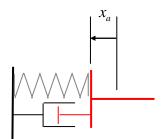


Figure 4 : Treuil en liaison glissière à mouvement amorti avec le châssis de la dameuse.

Lors de l'utilisation du treuil, le pilote de la dameuse règle sur son tableau de bord une consigne de vitesse de rotation du tambour.

Q2 Justifier l'intérêt de cette liaison glissière à mouvement amorti entre le tambour du treuil et la dameuse.

Le treuil est constitué des composants suivants :


- le tambour (T) en liaison pivot d'axe $(O, \vec{z_1})$ avec le coulisseau (C) ; sa vitesse de rotation est notée ω_t , son diamètre $D_t = 770mm$, son moment d'inertie $I_{(O, \vec{z_1})} = J_t$ et sa masse M_t ;
- le coulisseau (Co) en liaison glissière à mouvement amorti de direction x₁ avec le châssis de la dameuse :
 la raideur du ressort est notée k_a et le coefficient de l'amortisseur visqueux est noté μ_a. Le coulisseau est de masse négligeable.
- le moteur (M) exerce un couple $\overrightarrow{C_m} = C_m \overrightarrow{z_1}$ sur le tambour (T);
- le câble (C) est de raideur supposée infinie et sa masse est négligeable.

Notation:

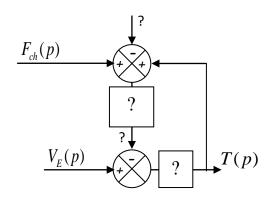
• le torseur de l'action de i sur j au point M se note :

$$T(i \rightarrow j) = \left\{ \overrightarrow{F_{i \rightarrow j}} = X_{ij} \overrightarrow{x_1} + Y_{ij} \overrightarrow{y_1} \\ \overrightarrow{m_{M(i \rightarrow j)}} = N_{ij} \overrightarrow{z_1} \right\}_{M};$$

• x_a caractérise la position du coulisseau par rapport à la position « ressort au repos » lorsque la dameuse est dans la pente.

Q3 Expliquer ce que signifie l'hypothèse de raideur infinie du câble d'un point de vue mécanique.

Q4 Déterminer la relation liant les paramètres M_b , V_A , x_A , T, k_a et μ_a .


En pratique, l'intensité de la tension dans le câble étant très importante, son comportement ne peut pas être modélisé par celui d'un solide indéformable. Dans la suite du sujet, il est assimilé à celui d'un solide à élasticité linéaire de caractéristique K_C : la variation de la tension T est proportionnelle (coefficient K_C) à la variation d'allongement élastique.

De ce fait, le constructeur de la dameuse a retenu de réaliser une liaison pivot entre le tambour et le châssis de la dameuse, supprimant ainsi la liaison glissière à mouvement amorti de la figure 4.

On note $V_{\scriptscriptstyle A}$ la vitesse d'avance de la dameuse et $V_{\scriptscriptstyle E}$ la vitesse linéaire d'enroulement du câble sur le tambour.

Q5 Exprimer
$$\frac{dT}{dt}$$
 en fonction de K_C , V_A et V_E .

Q6 À partir des résultats obtenus aux questions précédentes, compléter le schéma-bloc ci-contre. Les informations à compléter sont repérées par un point d'interrogation.

Q7 Exprimer la tension T(p) (image de T(t) dans le domaine de Laplace) en fonction des entrées du schémabloc ci-dessus.