SPE MP 2024-2025

EXERCICES BILAN ENERGETIQUE SYSTEME CHIMIQUE.

Exercice 1 : réactions de formation.

 $H_2O(l)$, $NH_3(g)$, CH_3COOH Ecrire les réactions standards de formation des espèces suivantes :

Exercice 2: combinaison de réactions.

Soient les réactions entre le cuivre, le dioxygène et l'oxyde de cuivre (I) :

(1)
$$4Cu(s) + O_2(g) = 2Cu_2O(s)$$
 $\Delta_r H_1^{\circ} = -333 \text{ kJ.mol}^{-1}$
(2) $2Cu_2O(s) + O_2(g) = 4CuO(s)$ $\Delta_r H_2^{\circ} = -287 \text{ kJ.mol}^{-1}$

(2)
$$2Cu_2O(s)+O_2(g)=4CuO(s)$$
 $\Delta_r H_2 \circ = -287 \text{ kJ.mol}^{-1}$

1- En déduire la valeur de l'enthalpie standard de réaction $\Delta_r H_3^{\circ}$ de la réaction d'équation :

(3)
$$2Cu(s) + O_2(g) = 2CuO(s)$$

2- La réaction est-elle endo ou exothermique ?

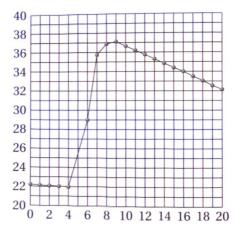
Exercice 3 : changement d'état et grandeurs de réaction

 $2C(s)+4H_2(g)+O_2(g)=2CH_3OH(l)$ 1- On considère la réaction suivante :

Déterminer pour cette réaction l'enthalpie et l'entropie standards de réaction à toute température.

<u>Données</u>:

Température d'ébullition du méthanol teb = 64.7°C Chaleur latente d'ébullition Leb = 35,9 kJ.mol-1


2- On considère la réaction suivante :
$$\frac{4}{3}Al_{(s)}+O_2(g)=\frac{2}{3}Al_2O_3(s)$$
 (1) pour $T < T_{fits}(Al)$

 $T_{\mathit{fius}}(Al) < T_{\mathit{fius}}(Al_2O_3)$, on connaît pour la réaction (1) les enthalpie et entropie standards de réaction que l'on note $\Delta_r H_1$ ° et $\Delta_r S_1$ ° ainsi que l'enthalpie molaire de fusion de l'aluminium $\Delta_{\mathit{fius}} H$ ° à la température de fusion.

Ecrire la réaction obtenue pour $T_{flus}(Al) < T < T_{flus}(Al_2O_3)$ et déterminer les expressions de ses enthalpie et entropie de réaction $\Delta_r H_2^{\circ} et \Delta_r S_2^{\circ}$.

Exercice 4 : Calorimétrie et enthalpie de réaction .

- 1- On souhaite mesurer l'enthalpie standard de la réaction de décomposition de l'eau oxygénée, H₂O₂. Pour cela, on commence par déterminer la capacité calorifique C du calorimètre. On place 50mLd'eau prise à température ambiante. Après stabilisation, on mesure to = 19,35°C. On ajoute alors 50mLd'eau tiède de température tl = 60,20°C. On obtient alors une température d'équilibre te = 39,52 °C. On donne la capacité thermique massique de l'eau liquide $c_1 = 4{,}18J \cdot g^{-1} \cdot K^{-1} \cdot Déterminer C$.
- 2- Dans une deuxième manipulation, On place V_1 = 50 ml de H_2O_2 de concentration co = 0,921 mol. L^{-1} . La température est relevée pendant 4 minutes. À t = 5 min, on ajoute V ₂= 10 ml d'une solution contenant le catalyseur de la réaction de décomposition. La température est à nouveau relevée pendant 15 minutes. On obtient le graphe suivant représentant la température mesurée en °C en fonction du temps en mn.

2- Le mélange réactionnel ayant une masse volumique $\rho = 1,00 \ g.mL^{-1}$ et une capacité thermique massique analogue à celle de l'eau, calculer la valeur expérimentale de l'enthalpie standard de décomposition de l'eau oxygénée. À partir des tables thermodynamiques on obtient -94,6kJ.mol ⁻¹.

Exercice 5 : cheminée au bioéthanol

Les cheminées au bioéthanol constituent une alternative aux cheminées à bois traditionnelles. La combustion de l'éthanol C₂H₅OH dans l'air produit des flammes d'une trentaine de centimètres de haut.

- 1 Ecrire l'équation de combustion de l'éthanol. Les produits sont formés à l'état gazeux.
- 2 Calculer l'enthalpie standard de cette réaction, ΔrH°. Commenter son signe.
- 3 Calculer la masse d'air nécessaire à la combustion de 1,5 L d'éthanol.
- 4 Déterminer la température de flamme $T_{\rm f}$, c'est-à-dire la température atteinte par le milieu réactionnel en négligeant tout transfert thermique avec l'extérieur. La température initiale vaut $Ti=298~{\rm K}$.
- 5 En hiver, une pièce de 30 m² doit être chauffée avec une puissance P = 3 kW. Quel volume V_0 de bioéthanol faudrait-il brûler par heure pour chauffer la pièce par ce seul moyen ?

Données:

 \triangleright masses molaires (g · mol⁻¹): H: 1,0; C: 12; N: 14; O: 16;

⊳masse volumique, enthalpie standard de formation et capacité thermique molaire standard à pression constante (à 298 K) :

	$C_2H_5OH_{(liq)}$	$\mathrm{H_2O_{(g)}}$	$CO_{2(g)}$	$O_{2(g)}$	$N_{2(g)}$
$\rho \; (\mathrm{kg \cdot m^{-3}})$	789	0,60	1,80	1,31	1,25
$\Delta_{\rm f} H^{\circ} \; ({\rm kJ \cdot mol^{-1}})$	-277,0	-241,8	-393,5	0	0
$C_P^{\circ} (\mathbf{J} \cdot \mathbf{K}^{-1} \cdot \mathbf{mol}^{-1})$	111	33,6	37,1	29,4	29,1

Exercice 6 : réduction de l'oxyde chrome par l'aluminium.

- 1- Ecrire l'équation bilan de la réaction de réduction d'une mole d'oxyde chrome (III) $Cr_2O_3(s)$, par l'aluminium, sachant qu'il ya formation d'alumine $Al_2O_3(s)$. L'enthalpie standard de la réaction à 300 K est ΔrH° = 560 kJ.mol⁻¹. La réaction est-elle endo ou exothermqiue ?
- 2- On mélange $0{,}90$ mol d'oxyde de chrome III et $1{,}80$ mol d'aluminium , à $300~\mathrm{K}$. On amorce la réaction qui est alors instantanée et totale .
- a- Quelle est la quantité de chrome obtenue ?
- b- On suppose que l'enthalpie dégagée par la réaction est théoriquement suffisante pour le chrome et l'alumine se trouvent en totalité à l'état liquide en fin de réaction . Calculer la température finale atteinte . L'hypothèse de calcul est-elle correcte ?
- c- Sachant que la densité de l'alumine liquide est nettement inférieure à celle du chrome liquide , pourquoi est-il intéressant , industriellement , d'obtenir le chrome et l'alumine à l'état liquide ?

Données :

	Chrome (liq ou sol)	Alumine (liq ou sol)	
Cp° (J. K ⁻¹ .mol ⁻¹)	40	120	
T fus (° C)	1910	2050	
ΔfusH°(kJ .mol ⁻¹)	20	110	