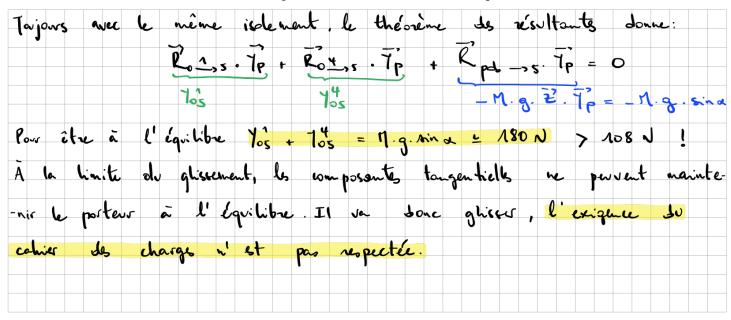
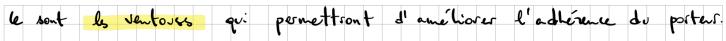

CONCOURS	Numéro d'inscription			
	Numéro de table Prénom :			
	Né(e) le			
Emplacement QR Code	Filière :	Session:		
	Épreuve de : SCIENCES INDUSTRIELLES			
	Remplir soigneusement l'en-tête de chaque feuille avant de commer Rédiger avec un stylo non effaçable bleu ou noir Ne rien écrire dans les marges (gauche et droite) Numéroter chaque page (cadre en bas à droite) Placer les feuilles A3 ouvertes, dans le même sens et dans l'ordre	ncer à composer		

Robot de nettoyage ROBUGLASS

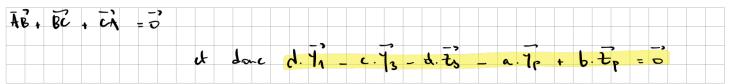
Question 1. Déterminer une stratégie de calculs pour déterminer \mathbb{Z}^4_{05} et \mathbb{Z}^1_{05} .

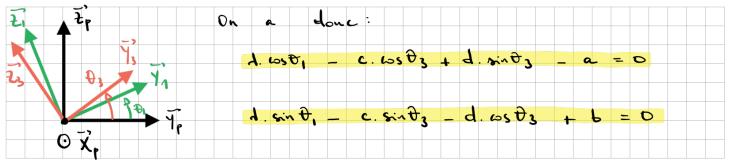
Question 2. Mener les calculs puis effectuer l'application numérique.

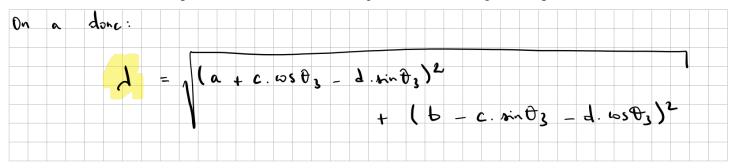

Question 3. Dans la théorie du frottement de Coulomb, quelle relation existe-t-il entre l'effort normal noté Z_{ij} et l'effort tangentiel noté Y_{ij} transmissible par une liaison ponctuelle à la limite du glissement (on note le coefficient de frottement f entre les solides i et j).

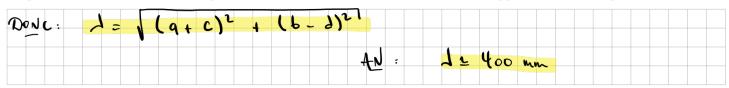

Question 4. Valeur maximum des composantes tangentielles Y_{05}^1 et Y_{05}^4 et calcul dans cette situation de l'effort tangentiel global $Y_{05}^1 + Y_{05}^4$.

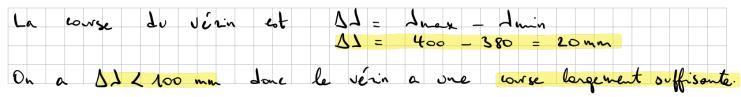
Dans	le	es limite, on a alors:	NotA: on a forwhent Z; > 0 sinon,
		105 = 65 N	pour "contrer" (a pesanteur.
		705 = 43 N	On a done 70s + 70s ~ 108 N

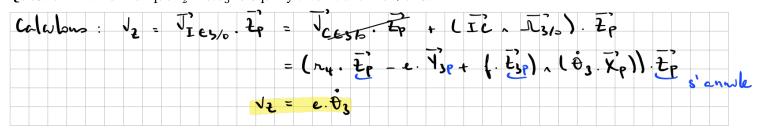

Question 5. Écrire le théorème des résultantes en projection sur $\overrightarrow{Y_P}$ appliqué à l'ensemble du porteur. Conclure quant à la vérification du critère du cahier des charges en lien avec l'inclinaison à respecter.

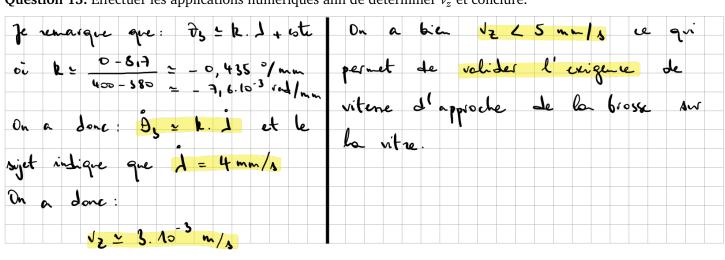

Question 6. Quels éléments, non pris en compte dans les questions précédentes, permettent d'améliorer l'adhérence du porteur?


Question 7. Écrire la fermeture géométrique du cycle CABC sous forme vectorielle en fonction de a, b, c, d et λ .

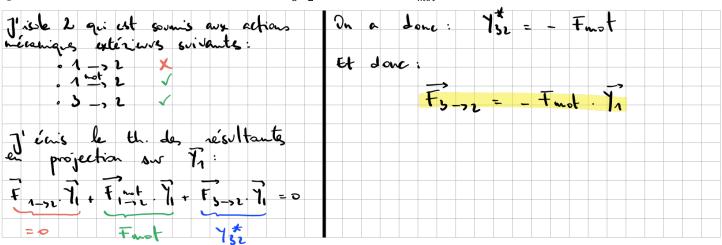

Question 8. Projeter l'expression obtenue à la question précédente sur $\overrightarrow{Y_p}$ et $\overrightarrow{Z_p}$.

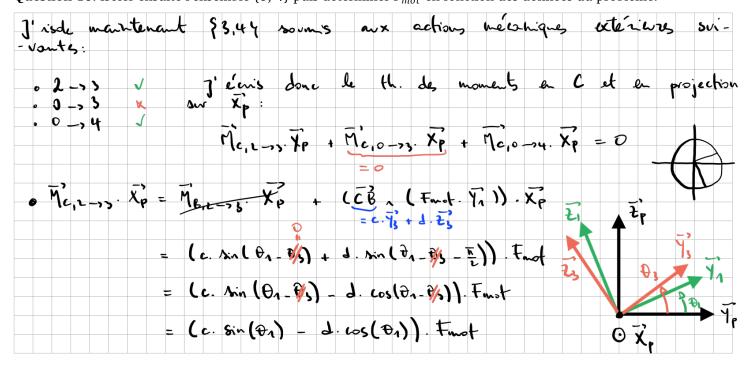

Question 9. Déterminer l'expression de λ en fonction de θ_3 et des constantes géométriques.

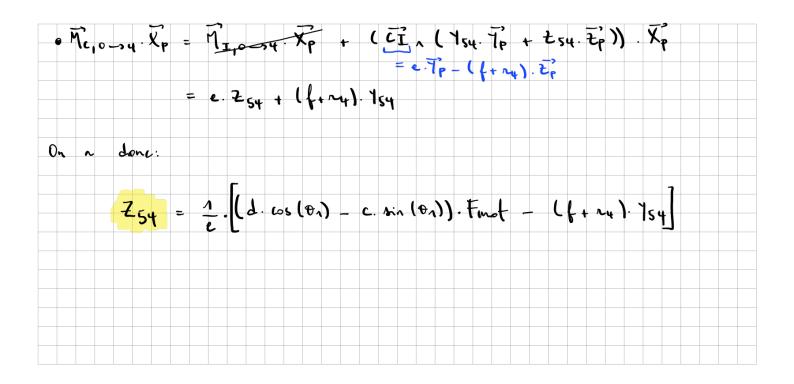

Question 10. On considère que la brosse est en contact avec le sol pour : $\theta_3 = 0$ rad. Pour cette valeur de θ_3 , en déduire l'expression de λ en fonction uniquement des longueurs a, b, c et d. Effectuer l'application numérique.


Question 11. En position haute, la longueur λ vaut 380 mm. En déduire la course nécessaire entre ces deux positions extrêmes. Le vérin est-il adapté?

Question 12. Montrer que $v_z = e.\dot{\theta}_3$ lorsqu'il y a contact entre 4 et 0.


Question 13. Effectuer les applications numériques afin de déterminer v_z et conclure.


Question 14. Isoler l'ensemble $\{1, 2\}$, en déduire le support de l'action $\overrightarrow{F}_{3\rightarrow 2}$.


J'asole {1,27 qui est sommis aux actions mécaniques extériers suiv-	Et \$3 -, 2 = \$ #3 -, 2 = \$ 52 Ne + 752 Pe + 252 Pe
Asec: M: Hypothèse du	Sous l'hypothère du pl. plan, \$1,24 n'st donc soums qu'à 2 ghisseus donc leur résultantes suront siniques par +B.
10-17 = SF0-1= North + 101 Tp+ 701 tp	Et donc +3-2 = 132 . 1

Question 15. Isoler le solide 2 et en déduire $\overrightarrow{F}_{3\rightarrow 2}$ en fonction de F_{mot} .

Question 16. Isoler ensuite l'ensemble $\{3,4\}$ puis déterminer F_{mot} en fonction des données du problème.

Question 17. En utilisant les résultats issus de la fermeture géométrique de la question 8, déterminer une relation entre θ_1 , θ_3 et des caractéristiques géométriques.

$$\begin{vmatrix} 1 & \cos \theta_1 & c & a & = 0 \\ 1 & \sin \theta_1 & -d & +b & = 0 \end{vmatrix}$$

$$= \frac{d - b}{a + c}$$

Question 18. On donne r_4 =40 mm et f =45 mm. Faire l'application numérique. Le vérin est-il adapté pour une utilisation sans régulation d'effort?

Sans régulation,	Fmst = 130 N	et dans u cos	: 254 ≈ 185 N
254 \$ [97 N;	103 NJ Lone	une utilisation	sons regulation d'effort
ne pert pas être	hvisagée.		