

ÉCOLE NATIONALE DES PONTS et CHAUSSÉES, ISAE-SUPAERO, ENSTA PARIS, TELECOM PARIS, MINES PARISTECH, MINES SAINT-ÉTIENNE, MINES NANCY, IMT Atlantique, ENSAE PARIS, CHIMIE PARISTECH - PSL.

Concours Mines-Télécom, Concours Centrale-Supélec (Cycle International).

CONCOURS 2025

ÉPREUVE DE SCIENCES INDUSTRIELLES

Durée de l'épreuve : 3 heures

L'usage de la calculatrice ou de tout dispositif électronique est interdit.

L'énoncé de cette épreuve comporte 15 pages de texte et 2 pages regroupant 2 annexes.

Le travail doit être reporté sur le document-réponse distribué avec le sujet. Un seul document-réponse est fourni au candidat, dont toutes les feuilles seront obligatoirement rendues à la fin de l'épreuve. Le renouvellement de ce document en cours d'épreuve est interdit.

Pour valider ce document-réponse, chaque candidat doit obligatoirement y inscrire à l'encre, à l'intérieur du rectangle d'anonymat situé en haut de chaque copie, son nom, son prénom, son numéro d'inscription et sa signature.

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en expliquant les raisons des initiatives qu'il est amené à prendre.

Les sujets sont la propriété du GIP CCMP. Ils sont publiés selon les termes de la licence Creative Commons Attribution - Pas d'Utilisation Commerciale - Pas de Modification 3.0 France. Tout autre usage est soumis à une autorisation préalable du Concours commun Mines Ponts.

Goniomètre à actionneurs piézo-électriques

1. Présentation

1.1. La radiocristallographie

La cristallographie par rayons X ou radiocristallographie est une méthode d'analyse de la matière qui consiste à analyser la diffraction d'un faisceau lumineux (de fréquence typique de 10^{16} à 10^{19} Hz) par un échantillon cristallin. Ce procédé est très utilisé en biologie pour déterminer la structure des molécules du vivant. Dans ce cadre, un monocristal de la molécule est placé dans un faisceau de rayons X monochromatiques et la diffraction observée pour différentes positions du cristal dans le faisceau de rayons X permet de déterminer non seulement la structure du cristal, mais aussi et surtout la structure de la molécule.

1.2. Le goniomètre SmarGon

Le positionnement de l'échantillon doit être très précis : il est réalisé par un équipement appelé goniomètre et correspond à une structure robotique à 6 degrés de liberté. Le SmarGon (de la société SmarAct GmbH), présenté sur la **Figure 1** et sur la **Figure 2**, est un goniomètre de dernière génération qui utilise une structure mécanique mixte série-parallèle et qui permet d'atteindre des précisions inférieures à 10⁻³ degré de position angulaire et inférieure à 5 nm de position linéaire.

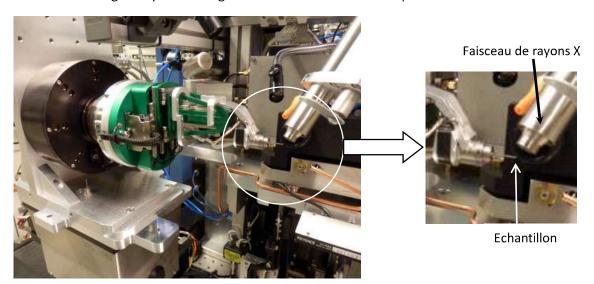


Figure 1 : photographie du goniomètre SmarGon

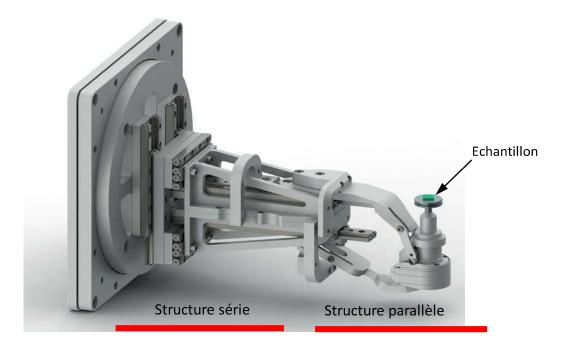


Figure 2 : modèle tridimensionnel du goniomètre SmarGon

Le goniomètre étudié (Figure 3) permet donc :

- de positionner l'échantillon au centre du faisceau de rayons X, ce qui nécessite le pilotage des 3 coordonnées cartésiennes du centre de l'échantillon : x, y et z ;
- d'orienter l'échantillon dans l'espace, ce qui nécessite le pilotage de 3 angles d'orientation : ψ , θ et φ .

Ainsi la pièce qui porte l'échantillon à étudier possède 6 degrés de liberté par rapport au bâti.

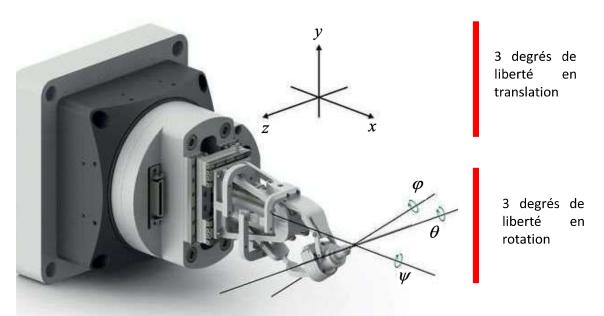


Figure 3 : six degrés de liberté de l'échantillon du goniomètre SmarGon

La société SmarAct, concevant et produisant le SmarGon, annonce des performances de précision de positionnement très élevées. Ces performances annoncées sont rassemblées dans le diagramme des exigences représenté dans l'**Annexe 1**.

L'enjeu de ce sujet est de vérifier certaines de ces performances, en modélisant puis simulant le goniomètre SmarGon.

2. Modélisation des chaînes fonctionnelles
L'organisation topo-fonctionnelle étant similaire sur les six axes du positionneur, on ne s'intéresse iqu'à la chaîne de puissance de la rotation d'angle θ .
Question 1. A l'aide du diagramme de blocs internes donné en Annexe 2 , compléter sur l document-réponse la chaîne de puissance de la rotation d'angle θ du goniomètre SmarGon.

4. Choix des actionneurs

On cherche à sélectionner dans le catalogue du constructeur en **Annexe 3**, les actionneurs capables de vérifier les exigences 1.2.3 et 1.1 du cahier des charges.

4.1. Choix d'un actionneur validant l'exigence 1.2.3 « Domaine atteignable »

Pour vérifier l'exigence 1.2.3 « Domaine atteignable » (Annexe 1), on détermine à l'aide d'une fermeture géométrique les courses nécessaires des deux actionneurs linéaires.

Le mécanisme simplifié est représenté sur la Figure 5.

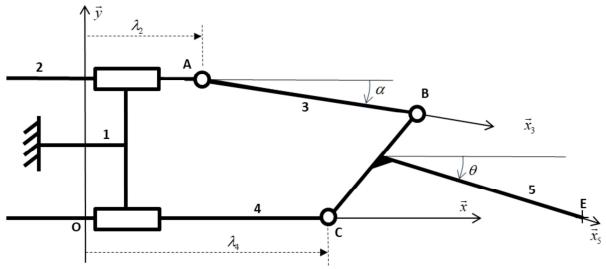


Figure 5: schéma cinématique simplifié de la structure parallèle

Il est à noter que dans la position du modèle, les angles α et θ sont négatifs.

Données géométriques :

Au bâti 1 est associé le repère $(O, \vec{x}, \vec{y}, \vec{z})$ et à chaque solide i est associée une base orthonormée directe $(\vec{x_i}, \vec{y_i}, \vec{z})$. Le problème étant plan, le vecteur \vec{z} est commun à toutes les bases.

 $\lambda_2(t)$ et $\lambda_4(t)$ sont les paramètres de position imposés par les deux actionneurs linéaires.

On note:

Les deux paramètres utiles au positionnement de l'échantillon sont $\,\theta(t)\,$ et $\,x_{\scriptscriptstyle E}(t).$

A partir de la position de la Figure 5, on considère deux mouvements simples distincts :

- mouvement 1: $\theta(t)$ est constant et $x_E(t)$ est croissant;
- $\,$ $mouvement \, 2: \, x_{_E}(t)$ est constant et $\, heta(t)$ est croissant.

Question 2. Pour chacun des « mouvement 1 » et « mouvement 2 », indiquer les déplacements nécessaires des actionneurs linéaires en cochant les cases correspondantes du document-réponse.

On note $\Delta \lambda = \lambda_1(t) - \lambda_2(t)$.

Question 3. A partir d'une fermeture géométrique, déterminer une équation du second degré de la forme : $\Delta\lambda^2 + A_1(\theta)\Delta\lambda + B_1(\theta) = 0$ où $A_1(\theta)$ et $B_1(\theta)$ sont deux fonctions de θ à expliciter.

Grâce à une simulation, nous obtenons la loi entrée-sortie de la structure parallèle, représentée sur la **Figure 6**.

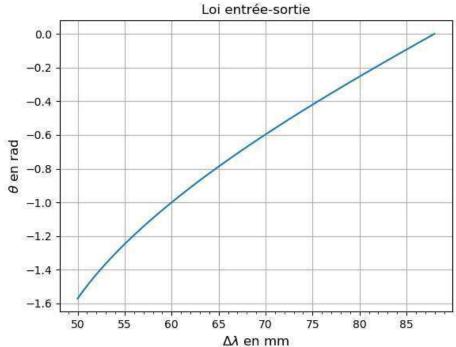


Figure 6 : loi entrée-sortie simulée : θ en fonction de $\Delta\lambda$

b) la plage de variation de θ de l'exigence 1.2.3?

4.2. Choix d'un actionneur validant l'exigence 1.1 « Maintenir en position »

Pour vérifier l'exigence 1.1 « Maintenir en position » (Annexe 1), on détermine à l'aide d'une étude statique la force à fournir par l'actionneur linéaire le plus sollicité.

Hypothèses:

- les liaisons sont supposées parfaites ;
- le repère lié au bâti 1 est considéré comme galiléen, l'ensemble du mécanisme est en équilibre dans ce repère, dans la position représentée **Figure 5** ;
- le problème est plan dans (O, \vec{x}, \vec{y}) ;
- le poids des pièces est négligé, à l'exception du solide 5 auquel est fixé un actionneur d'orientation autour de l'axe (E, \vec{y}_5) . La pesanteur exerce une action mécanique sur la pièce 5 modélisée par $\{T_{ext \to 5}\}$: $\left\{ \begin{matrix} -P\vec{y} \\ \vec{0} \end{matrix} \right\}_{G_5}$ avec P > 0 et $\overline{CG_5} = d\vec{x}_5 + \frac{c}{2}\vec{y}_5$, où G_5 est le centre de

Question 5. Montrer que la résultante des actions mécaniques de 5 sur 3, notée $\vec{R}_{5\to3}$, a pour direction le vecteur \vec{x}_3 .

On notera alors $\vec{R}_{5\rightarrow3} = X_{53}\vec{x}_3$.

gravité de la pièce 5.

Question 6. Isoler 5, déterminer X_{53} en fonction de P et des grandeurs géométriques nécessaires. Préciser l'équation scalaire, du principe fondamental de la statique, utilisée pour la résolution.

Le torseur $\{T_{act \to 2}\}$, modélisant l'action mécanique de l'actionneur linéaire sur 2, a pour résultante : $\vec{R}_{act \to 2} = F \; \vec{x} \; .$

Par simulation numérique, nous pouvons calculer les valeurs de F . Les résultats obtenus sont représentés sur la **Figure 7** :

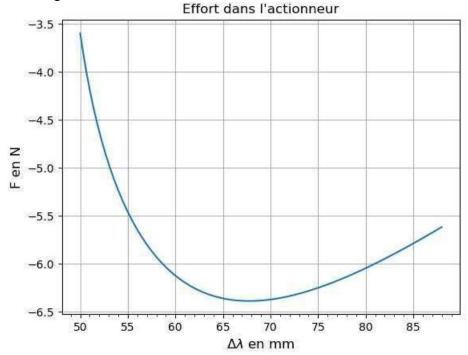


Figure 7 : effort dans l'actionneur F simulé en fonction de $\Delta\lambda$

Question 8. A partir des références d'actionneurs données en **Annexe 3**, déterminer le ou les actionneurs permettant de vérifier la force à exercer afin de valider l'exigence 1.1.

5. Validation des exigences de stabilité et de précision

5.1. Vérification de l'exigence de stabilité.

Pour vérifier l'exigence« Stabilité » (Annexe 1), on modélise l'actionneur piezo-électrique au sein du mécanisme de la structure terminale, afin d'étudier les caractéristiques de sa fonction de transfert.

L'actionneur installé sur le goniomètre SmarGon est un actionneur linéaire piézo-électrique. Cette technologie est utilisée afin d'avoir le niveau de précision souhaité. L'actionneur linéaire utilisé dans le SmarGon est un actionneur pas-à-pas. Chaque pas de déplacement est créé en utilisant le principe inverse de l'effet piézo-électrique. Pour cela, le matériau utilisé dans la conception de l'actionneur est une céramique, constituée en multi-couches. Ces couches sont polarisées et recouvertes d'électrodes afin d'appliquer un champ électrique d'excitation. Sous l'effet de ce champ, le matériau piézo-électrique répond par une déformation qu'il faut ensuite utiliser pour créer un petit déplacement, appelé pas. Le modèle électro-mécanique proposé pour cette étude est représenté sur la **Figure 8**. On notera que dans cette modélisation, la force extérieure due aux poids des différentes pièces du mécanisme de la structure terminale n'est pas prise en compte, car influançant peu le comportement dynamique étudié ici. Le paramètre $\lambda(t)$ représente le déplacement d'un actionneur piézo-électrique, noté $\lambda_2(t)$ et $\lambda_4(t)$ dans les parties précédentes du sujet.

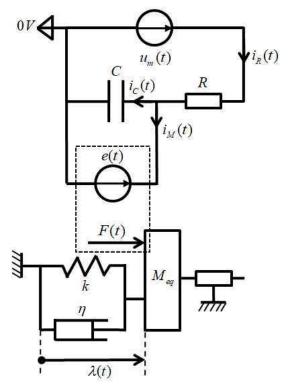


Figure 8: modèle électro-mécanique de l'actionneur linéaire piézo-électrique

La masse M_{eq} représente la masse équivalente de la chaîne de transmission ramenée sur l'actionneur.

5.2. Détermination de la masse équivalente

On se base toujours sur le schéma cinématique de la Figure 5, mais on suppose le solide 4 fixe par rapport au bâti 1.

Hypothèses:

Le repère lié au solide 1 est supposé galiléen.

Solide 3 : masse et inertie négligées.

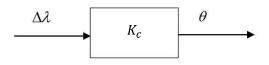
Solide 5: le centre de gravité de la pièce 5, et du positionneur d'angle qui lui est fixé, est tel que $\overrightarrow{CG_5} = d.\overrightarrow{x_5} + \frac{c}{2}.\overrightarrow{y_5}$. On note m_5 sa masse. Son moment d'inertie autour de l'axe $(G_5.\overrightarrow{z})$ est C_5 .

Solide 2 : sa masse est notée m_2 .

Indication. On rappelle que, compte-tenu des hypothèses, il est possible d'écrire l'énergie cinétique de 5/1 de la manière suivante : $E_c(5/1) = \frac{1}{2} \cdot C_5 \cdot \left[\frac{d\theta}{dt} \right]^2 + \frac{1}{2} \cdot m_5 \cdot \left[\overrightarrow{\eta}_{G_5 \in 5/4} \right]^2$.

Question 9. Calculer l'énergie cinétique du solide 5 dans son mouvement par rapport à 1: $E_c(5/1)$ en fonction de $\frac{d\theta}{dt}$ et des grandeurs géométriques et d'inertie du solide 5.

Question 10. Autour du point de fonctionnement $\theta=0\ rad$ linéariser la loi entrée-sortie (**Figure 6**). Faire apparaître les tracés sur le document-réponse, déterminer la valeur de K_c et donner son unité.



On se place dans la position particulière où $\theta=0$ rad, on a donc au voisinage de cette position la relation : $\theta(t)=K_c$. $\Delta\lambda(t)$.

Question 11. Calculer l'énergie cinétique de l'ensemble en mouvement $\Sigma = \{2,3,5\}$ par rapport à 1: $E_c(\Sigma/1)$. En déduire l'expression de la masse équivalente M_{eq} de l'ensemble Σ rapportée au solide 2.

5.3. Validation de l'exigence 1.2.4 du cahier des charges

L'objectif de cette sous-partie est de vérifier l'exigence 1.2.4 (**Annexe 1**) de stabilité de l'actionneur en élaborant un modèle de connaissance linéaire.

Nous adopterons, pour la conversion électro-mécanique associée à l'effet piézo-électrique du matériau, le modèle de connaissance régi par les deux équations suivantes :

$$i_M(t) = k_i \cdot \frac{d\lambda}{dt}(t)$$
 et $F(t) = k_i \cdot e(t)$

 k_i est appelée la constante de force de l'actionneur et dépend des composites utilisés ainsi que de la géométrie des moteurs ($k_i = 4N.V^{-1}$).

La partie basse du modèle (**Figure 8**) représente un système masse, ressort, amortisseur modélisant la chaîne de transmission de puissance du SmarGon. Les paramètres k et η caractérisent respectivement la raideur et l'amortissement du corps piézo-électrique. F(t) représente la force exercée par l'actionneur linéaire sur la masse équivalente M_{eq} . Nous supposerons qu'à l'instant initial, toutes les grandeurs temporelles sont nulles.

Question 12. Déterminer une équation différentielle reliant F(t) et ses dérivées successives à $u_m(t)$ et $\frac{d\lambda}{dt}(t)$ de la forme $u_m(t)=a_0$. $F(t)+a_1$. $\frac{dF}{dt}(t)+a_2$. $\frac{d\lambda}{dt}(t)$. Vous indiquerez les expressions des constantes a_0 , a_1 et a_2 dans les cadres du document-réponse.

Question 13. Compléter le schéma-blocs du document-réponse en indiquant les fonctions de transfert des blocs 1 et 2.

F(t) représente la force exercée par l'actionneur linéaire sur la masse équivalente M_{eq} , provoquant ainsi un pas de déplacement. Les efforts développés par le ressort et l'amortisseur sur la masse équivalente, $F_r(t)$ et $F_a(t)$, obéissent aux lois de comportement suivantes :

$$F_r(t) = -k \cdot \lambda(t)$$
 et $F_a(t) = -\eta \cdot \frac{d\lambda}{dt}(t)$

L'actionneur linéaire étant utilisé horizontalement, nous négligerons l'impact de la pesanteur sur la chaîne de transmission.

Question 14. Déterminer, en indiquant le système isolé et le théorème utilisé, l'équation différentielle du mouvement de la masse équivalente reliant $\lambda(t)$ et ses dérivées successives à F(t).

Question 15. Compléter le schéma-blocs du document-réponse en indiquant les fonctions de transfert des blocs 3, 4 et 5.

Question 16. Déterminer la fonction de transfert $H(p)=\frac{\lambda(p)}{u_m(p)}$ du modèle ainsi obtenu. Ecrire H(p) sous la forme d'une fraction rationnelle dont le polynôme du dénominateur admet un coefficient constant égal à 1.

Une étude numérique a permis d'obtenir les pôles de la fonction de transfert H(p) représentés sur la **Figure 9** page suivante.

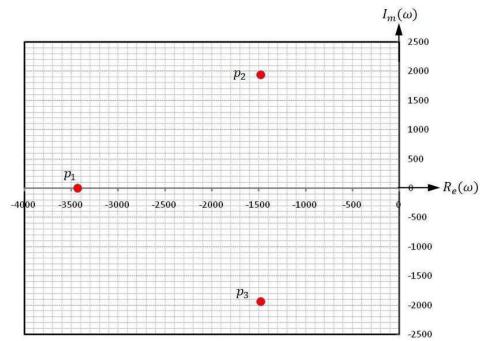


Figure 9 : pôles de la fonction de transfert H(p) dans le plan complexe $(I_m(\omega) : partie imaginaire ; <math>R_e(\omega) : partie réelle)$

Avec ces pôles, il serait alors possible de conclure sur les performances en terme de stabilité de l'asservissement.

Conclusion : nous avons vérifié la stabilité de l'actionneur électrique à l'aide du modèle linéaire. Nous pouvons désormais vérifier ses performances en précision et rapidité.

5.4. Vérification de l'exigence 1.2.1 a du cahier des charges

L'objectif de cette sous-partie est de vérifier l'exigence 1.2.1 a du cahier des charges (Annexe 1). Lors du mode de déplacement « scan », le pas de déplacement doit être inférieur ou égal à 3 μ m.

Le goniomètre doit permettre de placer très finement l'échantillon pour analyse. La précision de positionnement lors de ce mode de déplacement très précis, appelé mode « scan » doit être inférieure ou égale à 3 μm .

Afin de valider en avant-projet le choix de l'actionneur piézo-électrique, nous le soumettons à un échelon de tension telle que $u_m(t)=U_0.u(t)$ avec $U_0=10\,V,\ u(t)$ représentant la fonction échelon unitaire. Nous indiquons les valeurs numériques : $k=16\,N.\,\mu m^{-1}$ et $k_i=4\,N.\,V^{-1}$.

L'utilisation des pôles permet de montrer que la fonction de transfert H(p) peut s'écrire sous

la forme :

H(p) =
$$\frac{\lambda(p)}{U_m(p)} = \frac{H_0}{(1+\tau \cdot p)(1+\frac{2\xi}{\omega_0} \cdot p+\frac{1}{\omega_0^2} \cdot p^2)}$$
.

Pour la suite du sujet, nous considèrerons les valeurs numériques suivantes pour les paramètres caractéristiques de H(p) :

$$H_0 = 0.3 \ \mu m. V^{-1}$$
; $\tau = 0.3 \ ms$; $\xi = 0.08$; $\omega_0 = 2.10^4 \ rad. \ s^{-1}$

Question 17. Déterminer l'expression littérale de la valeur finale du déplacement $\lambda(t)$ notée λ_{fin} . **Question 18.** Conclure sur la capacité de l'actionneur à respecter l'exigence 1.2.1 a du cahier des charges.

Conclusion : nous avons vérifié la précision de positionnement en mode de déplacement « scan ». Nous pouvons désormais valider le mode de déplacement rapide : le mode d'approche « stick-slip ».

5.5. Vérification de l'exigence 1.2.2 d du cahier des charges

L'objectif de cette partie est de valider l'exigence 1.2.2 d du cahier des charges (**Annexe 1**). Cette exigence s'applique au mode d'approche en déplacement rapide, le mode « stick-slip ».

Le fonctionnement du mode d'approche est basé sur le phénomène « adhérence-glissement » (« *stick-slip* » en anglais). Ainsi, lorsque la variation de vitesse de l'actionneur linéaire est faible, il va entrainer un coulisseau en translation par adhérence. Au contraire, lorsque la variation de vitesse est élevée (dans un sens ou dans l'autre), il n'entrainera plus le coulisseau, glissant sur ce dernier. Ce principe est illustré sur la **Figure 10**.

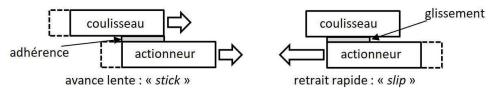


Figure 10 : phénomène de « stick-slip »

Le déplacement continu du coulisseau est obtenu par une succession rapide de la séquence suivante : un mouvement d'avance lent de l'actionneur puis une diminution rapide de la vitesse pour assurer une phase de glissement.

Afin de réaliser une succession de pas de déplacement, nous souhaitons solliciter l'actionneur linéaire avec une tension périodique $u_m(t)$ de fréquence $f=\frac{1}{T}=\frac{\omega}{2\pi}$ et d'amplitude $U_0=10~V$ telle que représentée sur la **Figure 11**.

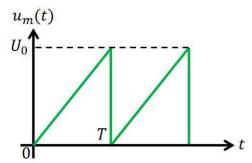


Figure 11 : pilotage de l'actionneur en mode d'approche

La fréquence de pilotage a un rôle important afin d'assurer un déplacement rapide, c'est-à-dire pour obtenir une vitesse de déplacement élevée. Pour cette raison, le pilotage de l'actionneur est choisi à très hautes fréquences : $\omega > 10^4 \ rad. \ s^{-1}$, sans sortir de la bande passante de l'actionneur. L'objectif de cette partie est d'analyser le comportement fréquentiel de l'actionneur piézo-électrique afin de vérifier l'exigence 1.2.2 d.

Rappel: Pour la suite du sujet, nous considèrerons les valeurs numériques suivantes pour les paramètres caractéristiques de H(p):

$$H_0=0.3~\mu m.V^{-1}$$
 ; $\tau=0.3~ms$; $\xi=0.08$; $\omega_0=2.10^4~rad.s^{-1}$

Question 19. Compléter le document-réponse en représentant les diagrammes asymptotiques de Bode de gain et de phase de la fonction de transfert H(p). Indiquer les valeurs asymptotiques, les valeurs des pentes ainsi que les valeurs des pulsations particulières.

Une étude numérique a permis de tracer le diagramme de Bode du gain de H(p), représenté sur la **Figure 12**, pour $\omega \in [10^4 \ rad. \ s^{-1}; 2, 2.10^4 \ rad. \ s^{-1}]$.

NOTA. Le gain en dB de H(p) sera de la même unité que 20.log(H₀), c'est-à-dire en log($\frac{Y^m}{V}$).

On donne également 20.log(0,3) = -10 dB.

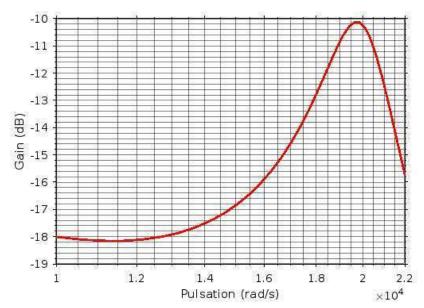


Figure 12 : diagramme de Bode du gain de H(p)

Question 20. Indiquer la valeur de la pulsation de résonance ω_R . Déterminer l'amplitude du déplacement $\lambda(t)$ en régime permanent pour la pulsation de résonance ω_R . On donne $\sqrt{10}\approx 3$.

Question 21. Par quel facteur le déplacement est-il multiplié en sollicitant l'actionneur piézo-électrique à la pulsation de résonance ω_R plutôt qu'à la pulsation de $10^4~rad.s^{-1}$? On donne $\sqrt[5]{100} \approx 2.5$.

Question 22. Conclure sur la validité de l'exigence 1.2.2. d du cahier des charges.

Conclusion : nous avons obtenu une sensibilité maximale en pilotant les actionneurs à leur résonance en mode d'approche, nous pouvons maintenant étudier les performances dynamiques de ce mode de déplacement.

Suite page suivante.

4.4. Vérification de l'exigence 1.2.2 b du cahier des charges

L'objectif de cette partie est de valider l'exigence 1.2.2 b du cahier des charges (**Annexe 1**). Cette exigence quantifie les performances dynamiques du mode de déplacement rapide.

Le modèle mécanique pour l'étude du mode d'approche et du phénomène « stick-slip » est représenté sur la **Figure 12**. Le coulisseau 2 est en liaison sphère-plan avec la partie mobile 1 de l'actionneur linéaire (appelée « translator ») aux points A et B. Ces deux liaisons sont modélisées avec frottement. L'effet piézoélectrique développe un effort sur le translator 1 représenté par un glisseur en C porté par \vec{x} , d'intensité $F_m: \overrightarrow{F_m} = F_m.\vec{x}$. Les effets dynamiques sont pris en compte dans les questions suivantes. Le déplacement du coulisseau 2 par rapport au bâti 0 est représenté par la variable x(t) telle que : $\overrightarrow{OG_2}.\vec{x} = x(t)$. Le déplacement du translator 1 par rapport au bâti est noté $\lambda(t)$ tel que $\overrightarrow{OC} = \lambda(t).\vec{x}$. Les masses du coulisseau 2 et du translator 1 sont notées respectivement m_2 et m_1 .

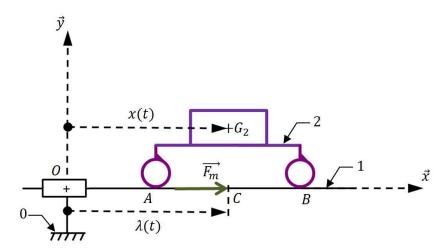


Figure 12 : modélisation du contact actionneur-coulisseau

Données et hypothèses :

- le repère lié au bâti 0 est supposé galiléen ;
- le modèle adopté pour le frottement en A et en B est le modèle de Coulomb, le facteur de frottement est noté μ_a ;
- l'accélération de la pesanteur est noté : $\vec{g} = -g \cdot \vec{y}$ avec $g = 10 \, m \cdot s^{-2}$;
- $m_1 + m_2 = 0.4 \ kg$;
- le problème est plan.

Les efforts de contact entre 2 et 1 sont représentés par les torseurs suivants, réduits respectivement en \vec{A} et en \vec{B} et exprimés dans la base $(\vec{x}, \vec{y}, \vec{z})$:

$$\{T_{1\to 2}^A\} = \begin{cases} X_A & 0 \\ Y_A & 0 \\ 0 & 0 \end{cases}_A \qquad \{T_{1\to 2}^B\} = \begin{cases} X_B & 0 \\ Y_B & 0 \\ 0 & 0 \end{cases}_B$$

Question 23. Isoler le coulisseau 2, effectuer le bilan des actions mécaniques qui s'y appliquent et écrire les équations issues du Théorème de la résultante dynamique, en projection suivant \vec{x} et \vec{y} .

Pour valider le cahier des charges, nous étudions le mouvement en phase de « stick », c'est-à-dire dans le cas de l'adhérence du coulisseau 2 sur le translator 1 en A et en B. De plus, nous nous placerons dans le cas où $\frac{d\lambda}{dt} > 0$ et $\frac{d^2\lambda}{dt^2} > 0$ afin de modéliser un mouvement accéléré dans le sens de $+\vec{x}$.

Question 24. En prenant en compte toutes les hypothèses précédentes, déterminer l'expression de l'accélération maximale admissible $\frac{d^2x}{dt^2}_{MAX}$ afin de conserver l'adhérence de 2 par rapport à 1. Question 25. En déduire la valeur du facteur de frottement μ_a à adopter pour vérifier l'exigence

1.2.2 b du cahier des charges.

Question 26. Déterminer une équation reliant F_m , X_A , X_B et $\frac{d^2\lambda}{dt^2}$. Préciser l'isolement, le bilan des actions mécaniques extérieures ainsi que le théorème utilisé.

Question 27. Déterminer l'expression de l'effort moteur minimal F_{min} nécessaire pour obtenir le glissement de 2 par rapport à 1. Faire l'application numérique afin de vérifier l'exigence 1.2.2 c du cahier des charges.

Conclusion: nous avons validé les performances dynamiques du mode d'approche en « stick-slip ». Nous pouvons maintenant vérifier l'ensemble des exigences du cahier des charges.

5. Synthèse : validation des performances en précision et en rapidité.

L'objectif de cette synthèse est de vérifier l'ensemble des exigences du cahier des charges à l'aide de simulations numériques obtenues à partir du modèle élaboré dans les parties précédentes. Nous validerons dans cette partie les exigences 1.2.2 a, 1.2.1 b et 1.2.1 c (Annexe 1).

Le positionnement de l'échantillon se divise en 2 phases successives :

- un mode de déplacement rapide, ou mode d'approche, qui est une succession de séquences « stick-slip »;
- un mode « scan » afin de positionner précisément l'échantillon.

Première phase : mode d'approche

L'actionneur linéaire piézoélectrique doit être piloté de façon à assurer le mouvement d'approche et donc la succession des modes « stick » et « slip ». Une simulation numérique, Figure 13, permet d'obtenir l'évolution temporelle de la position θ de l'organe terminal de positionnement, ainsi que sa vitesse de rotation $\frac{d\theta}{dt}(t)$.

Cette simulation prend en compte le gain de la chaîne cinématique : $K_c = \frac{\theta(t)}{\lambda \lambda(t)}$

La commande est ici une tension périodique $u_m(t)$ de fréquence $f=\frac{\omega_R}{2\pi}$ et d'amplitude $U_0=10~V$ telle que représentée sur la Figure 10.

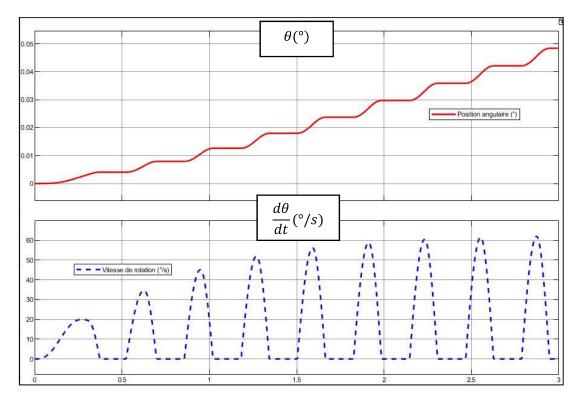


Figure 13: position et vitesse de l'organe terminal en mode « approche » en fonction du temps (ms)

Question 28. Indiquer sur le document-réponse les phases de « stick » et « slip ».

Question 29. Vérifier l'exigence 1.2.2 a du mode d'approche du cahier des charges.

Seconde phase : mode « scan »

L'actionneur linéaire piézoélectrique doit être piloté de façon à assurer un déplacement le plus précis possible. La **Figure 14** représente les résultats d'une simulation numérique en appliquant un échelon de tension de commande de 10~V à l'actionneur linéaire. Elle indique l'évolution temporelle de la position θ de l'organe terminal de positionnement. Cette simulation prend en compte le gain de la chaîne cinématique $K_c = \frac{\theta(t)}{\Delta \lambda(t)}$.

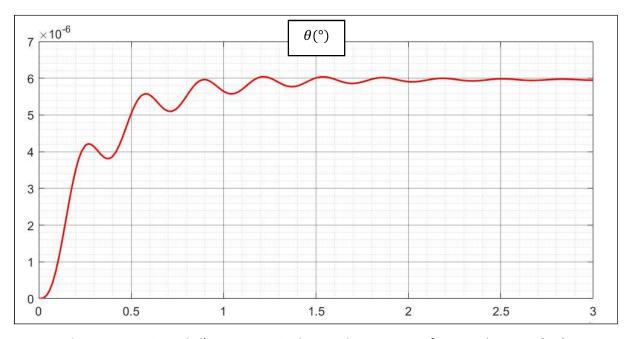


Figure 14: position de l'organe terminal en mode « scan » en fonction du temps (ms)

Question 30. Indiquer sur le document-réponse la valeur finale ainsi que le temps de réponse à 5%, en faisant apparaître les tracés nécessaires sur la courbe.

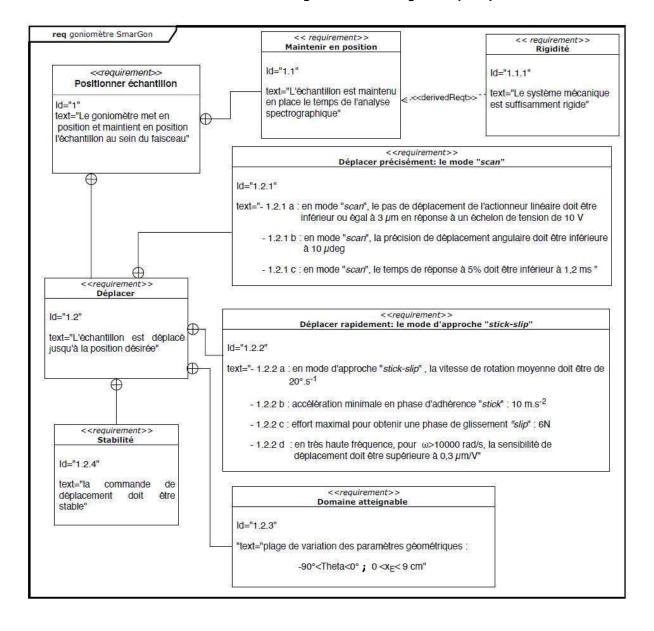
Question 31. Vérifier les exigences 1.2.1 b et 1.2.1 c du mode « *scan* » du cahier des charges.

Conclusion : les performances simulées du système de positionnement du goniomètre sont validées.

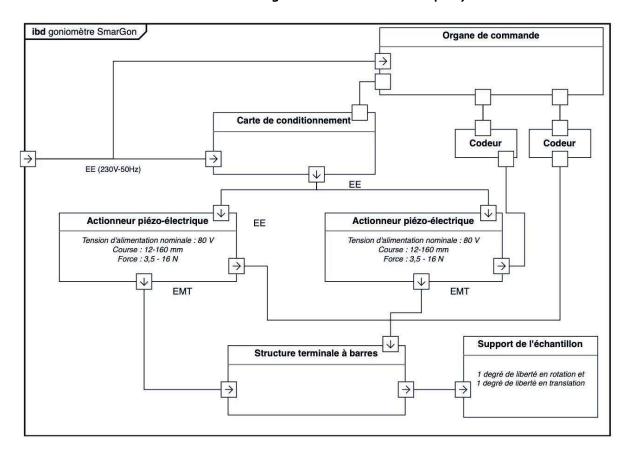
FIN

Annexes

Annexe 1: Diagramme des exigences (REQ)



Annexe 2 : Diagramme de bloc interne (IBD)



Annexe 3 : Caractéristiques mécaniques des actionneurs piezo-électriques disponibles

Référence	Course	Force	Dimensions de la section transversale de l'actionneur
	[mm]	[N]	[mm]
SLC 17	12	3,5	17x8,5
SLC 24	54	5,5	24x10,5
CLS 32	102	7	32x11
CLS 52	123	10,5	52x14
CLS 92	160	16	92x17