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Introduction aux méthodes d’intelligence artificielle

Introduction
Le terme intelligence artificielle est un terme général désignant un ensemble de méthodes informatiques destinées
à imiter certaines capacités de l’intelligence humaine. Les domaines d’application sont nombreux : reconnaissance
d’objets sur des images, programmation d’une machine prenant le rôle d’un joueur, classifications diverses ... Ces
méthodes ont, parmi les méthodes informatiques, une particularité : elles impliquent souvent des algorithmes
d’apprentissage. Cela signifie que le traitement de données massives par l’algorithme va permettre d’améliorer son
efficacité.
Dans ce TP, nous allons traiter les deux méthodes suivantes : k plus proches voisins et k moyennes.

1 Méthode des k plus proches voisins

1.1 Description de la méthode
Cette méthode est destinée à traiter le problème suivant. On dispose d’une population (au sens large) divisée
en plusieurs groupes. Les individus de cette population sont porteurs de caractéristiques numériques (âge, taille,
intensité d’une couleur ...). L’objectif est, en considérant la valeur de ces caractéristiques pour un individu (dont
le groupe est a priori inconnu), de le classer dans un des groupes.
Le fait que ces groupes sont connus à l’avance implique que cette méthode est classée parmi les méthodes
d’apprentissage supervisé.
Pour pouvoir effectuer ce classement d’un élément dans un groupe en s’appuyant sur ses caractéristiques, on dis-
pose au départ d’un échantillon de cette population appelé jeu de données d’apprentissage.
Par exemple, le graphique ci-dessous représente des points répartis en trois groupes : disques verts, losanges bleus,
carrés rouges. Les caractéristiques de chaque point sont ses coordonnées. Peut-on, étant donné un point dont on
ne connaît pas le groupe mais juste les coordonnées, décider du groupe auquel il appartient ?
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Le principe de la méthode est le suivant. On fixe un entier k. Parmi le jeu de données d’apprentissage, on détermine
les k points les plus proches du point auquel on doit affecter un groupe (au sens de la distance euclidienne, d’autres
choix étant bien sûr possibles). On détermine ensuite le groupe majoritaire parmi ces k points et c’est ce groupe
qui est affecté au point que l’on souhaite classer.
Nous allons construire cette méthode sur l’exemple simple de trois groupes de points dans le plan, comme sur le
graphique ci-dessus. En pratique, cette méthode peut être appliquée à des problèmes plus complexes. On en verra
un exemple (la reconnaissance de caractères) en TP.

-1-



Spé MP - Informatique Tronc Commun 2025/2026

1.2 Mise en place de la méthode
Le fichier kNN_Acompleter.py contient la trame du programme mettant en place la méthode.

1. La première partie du fichier est destinée récupérer un jeu de données d’apprentissage (les points dont le
groupe est connu). Ce jeu a été créé pour le besoins du TP, ces données sont aléatoires ; mais dans les
applications concrètes, il s’agit bien sûr de données provenant d’une partie de la population dont les carac-
téristiques et le groupe sont connus à l’avance.
On en profite pour revoir les commandes permettant de lire dans un fichier texte (ici le fichier ’don-
nees_app_KNN.txt’).
Compléter le début de notre programme :

import matplotlib.pyplot as plt
import numpy as np

## RECUPERATION DU JEU DU JEU DE DONNEES D’APPRENTISSAGE
fichier = open(’donnees_app_KNN.txt’,’r’)
liste_lignes = fichier.readlines ()
fichier.close ()

La variable liste_lignes contient alors la liste des lignes contenues dans le fichier (ce sont des chaînes de
caractères).
On aura besoin sur chacune de ces lignes :

• d’enlever le ’ n’ final grâce à la commande ligne.strip() ;
• de découper cette chaîne au niveau de chaque virgule grâce à la commande ligne.split(’,’) .

donnees_apprentissage = []
for ligne in liste_lignes:

ligne = #pour enlever le ’\n’ final
x , y , couleur =
donnees_apprentissage.append( ((........ , ........) , ........ ))

2. Écrire tout d’abord une fonction dist(P1,P2) qui renvoie la distance entre les points P1 et P2.

def dist(P1,P2):
""" renvoie la distance entre deux points ,
représentés sous forme d’une liste
ou d’un couple de deux éléments """
...
...
...

Écrire ensuite une fonction kNN(P,donnees,k) qui renvoie les k plus proches voisins du point P dans la liste
de points donnees.
Suggestion technique : on peut trier une liste d’objets (de couples par exemple) selon un critère sur ces
objets de la manière suivante. On définit une fonction sur les objets contenues dans la liste, puis on passe
cette fonction en paramètre de la fonction sorted de python. Tester par exemple :

def somme(C):
return C[0]+C[1]

l = [ (0,1) , (4,5) , (1,3) , (2,1)]
ls = sorted(l , key = somme)
print(ls)

Remarque : du point de vue de la complexité, ce tri n’est pas un choix très pertinent. En effet, on pourrait
déterminer le minimum des distances, puis le second minimum, . . . , jusqu’au k-ème. Si k est petit devant le
nombre de points, cela est plus efficace.
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Compléter :

def kNN(P,donnees ,k):
""" renvoie les k plus proches voisins du point P
dans la liste de points donnees ;
la liste donnees est une liste de couples dont :

- le premier termes est un couple représentant
les coordonnées d’un point ,

- le deuxième terme est la catégorie de ce point
"""
#on définit tout d’abord une fonction sur les couples de donnees
# qui va servir de critère de tri
def distance_a_P(d):

""" d est de la forme ((X,Y),’couleur ’)
"""
return ......

#On trie les données selon cette fonction de comparaison
donneesTriees = ....
return .....

3. Il faut ensuite trouver le groupe (la couleur pour nous) la plus fréquente dans ces k plus proches voisins.
On écrit pour cela une fonction typekNN(P,donnees,k) qui renverra une liste de couleurs, le fait que cette
liste soit de longueur strictement supérieure à 1 signalant qu’il y a des ex aequo. Dans ce cas, on dira que la
méthode échoue à décider du groupe.
Suggestion technique : comme il n’y a que trois groupes, on pourrait calculer les effectifs de chacun et
trouver le groupe d’effectif maximal de manière artisanale. On propose la méthode suivante, qui permettra
de réemployer la structure de dictionnaire abordée au TP précédent. On utilise un dictionnaire avec les clefs
’red’, ’blue’, ’green’ et les valeurs correspondant qui comptent le nombre d’apparitions de chaque couleur.
Pour obtenir ces nombres, on parcourt la liste renvoyée par la fonction kNN(P,donnees,k).
On pourra écrire au préalable une fonction argMax(dico) qui renvoie la liste des clefs dont les valeurs
associées sont maximales.
Compléter :

def argMax(dico):
""" renvoie la liste des clefs dont les valeurs associées sont max"""
M = - np.inf
for valeur in dico .... :

if ... :
M = ....

l = []
for a in ... :

if ... :
l.append(a)

return l

def typekNN(P,donnees ,k):
""" renvoie le type (parmi les trois couleurs) du point P
détecté selon la méthode des k plus proche voisins ,
appliquée avec comme jeu de données la liste donnees.
En cas d’égalité, la fonction renvoie une liste de plusieurs éléments """
kProchesVoisins = ...
nombreCouleur = {’red’ : 0 , ’blue’ : 0 , ’green’ : 0}
# ce dictionnaire devra contenir le nombre de fois où la couleur
# ’couleur ’ apparait dans la liste des k plus proches voisins de P
...
...
...
...
return couleurMax
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1.3 Matrice de confusion
Les fonctions écrites ci-dessus sont destinées à affecter une couleur à un point dont on connaît uniquement les
coordonnées. Cependant, avant d’utiliser cette méthode dans des cas concrets, on effectue en général une série
de tests. Pour cela, il faut disposer d’un autre jeu de données, dont on connaît les coordonnées et le groupe. On
donne ces données en exemple à la méthode et on regarde si pour chacune le groupe renvoyé est le bon.
Ces informations sont rassemblées dans un tableau appelé matrice de confusion : la case (i,j) de cette matrice
contient le nombre d’éléments du jeu de test faisant partie du groupe i et que la méthode à affectés au groupe j.
Bien sûr, si la méthode fonctionne parfaitement, cette matrice sera diagonale.
Construire la matrice de confusion associée à ce jeu de données test.

# RECUPERATION DU JEU DE DONNEES TEST

fichier = open(’donnees_test_KNN.txt’,’r’)
liste_lignes = fichier.readlines ()
fichier.close ()

donnees_test = []
...
...
...
...

##OBTENTION DE LA MATRICE DE CONFUSION

#dictionnaire faisant correspondre un numéro à chaque couleur :
dC = {’red’ : 0 , ’blue’ : 1 , ’green’ : 2}

# On choisit une valeur de k :
k = 5

#initialisation de la matrice de confusion :
matConf = np.zeros ((3 ,3))
#remplissage de la matrice de confusion
for d in donnees_test:

...

...

...

...

print(matConf)
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2 Algorithme des k-moyennes
Cet algorithme a également pour objectif de classer des éléments d’un ensemble dans des sous-ensembles, mais
ces sous-ensembles ne sont pas connus à l’avance. Pour cette raison, cette méthode d’apprentissage est dite
non-supervisée. En pratique, il s’agit pour la machine de regrouper des données proches en classes.

Considérons un exemple dans une situation simple. On dispose d’un ensemble de points que l’on souhaite classer
en k sous-ensembles (la valeur de k est fixée par l’utilisateur).
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L’ojectif de notre algorithme va être de classer ces points dans k ensembles C1, . . . , Ck en minimisant la somme
des moments d’inertie, c’est à dire, en notant bi le barycentre de Ci, la somme des valeurs suivantes :∑

p∈Ci

||p− bi||2 .

Ce problème est a priori très couteux en temps.
Nous allons adopter la stratégie suivante :

• On choisit arbitrairement k points x1, . . . , xk.

• On regroupe les points en classes Ci : la classe Ci est l’ensemble des points p tels que ||p− xi|| est minimal
parmi les ||p− xj ||.

• On recalcule les points x1, . . . , xk de la manière suivante : xi est le barycentre des points de Ci.

• On réitère le procédé (regroupement-nouvelle liste des barycentres) jusqu’à ce que la liste des classes (et donc
celle des barycentres) se stabilise.

Remarques :

• Le choix initial des points destinés à être les barycentres peut ne pas être tout à fait arbitraire.

• Nous admettrons que cette méthode converge (c’est à dire que l’algorithme s’arrête).

• Nous admettrons également que la configuration obtenue après arrêt est un minimum local pour la somme
des moments d’inertie (on n’a pas forcément trouvé la solution optimale).

Nous programmerons cet algorithme en TP sur l’exemple ci-dessus.
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