Spé MP - Informatique Tronc Commun 2025-2026

le 18/12/2025 — Durée : 2h

e [’usage de la calculatrice n’est pas autorisé.

e La clarté et la précision des raisonnements interviendront pour une grande part dans la notation. La présen-
tation (en particulier les indentations) est également essentielle.

e Le résultat d’'une question peut étre admis afin de traiter une question suivante ; une fonction peut étre
utilisée dans la suite d’un exercice méme si elle n’a pas été écrite.

e Le baréme tiendra compte de la longueur du devoir.

Exercice 1

On dispose d’une base de données composée de quatre tables (annexe 1) :
— La table Continents constituée des champs suivants :

e nom : nom du continent (chaine de caractéres);
e surface : surface du continent en kilométres carrés (entier).
— La table Pays constituée des champs suivants :
e nom : nom du pays (chaine de caractéres);
e code pays : identifiant unique du pays (chaine de caractéres);
e capitale : capitale administrative du pays (chaine de caractéres);
e population : nombre d’habitants du pays (entier).
— La table Inclusion constituée des champs suivants :
e code_pays : identifiant unique du pays (chaine de caractéres);
e continent : nom du continent auquel appartient le pays (chaine de caractéres).
— Latable Frontieres constituée des champs suivants :
e code pays1 : identifiant unique du premier pays (chaine de caractéres);
e code_pays2 : identifiant unique du second pays (chaine de caractéres);

e longueur : longueur en kilométres de la frontiére entre pays1 et pays2 (nombre flottant stricte-
ment positif).

On a toujours code_pays1<code_pays2 pour I'ordre lexicographique, ce qui assure que chaque fron-
tiere n’apparait qu’une fois dans la table Frontieres.

Spé MP - Informatique Tronc Commun

2025-2026

Table Continents

Annexe 1 nom surface
‘Asie’ | 44579000
’Europe’ | 9938000
Table Pays
nom code_pays | capitale | population
‘Albanie’ AL ‘Tirana’ 3088385
‘Algerie’ 'DZ’ "Alger’ 44487616
Table Inclusion
code_pays | continent
‘AL ‘Europe’
'DZ’ ‘Afrique’
Table Frontieres
code_paysl | code_pays2 | longueur
‘AL 'GR’ 282.8
‘AL ‘MK’ 161.5
1. Ecrire une requéte SQL permettant de récupérer le code du pays nommé 'France’.

2.

Ecrire une requéte SQL permettant d’obtenir les noms des pays appartenant au continent "Europe’.

Dans les deux questions suivantes, on admet que le code du pays nommé ’France’ est 'F’ et on peut utiliser
librement cette information.

3.

N o e

Ecrire une requéte SQL permettant de récupérer la longueur totale de la frontiére du pays nommé 'France’.
Ecrire une requéte SQL permettant de récupérer les noms des pays frontaliers du pays nommé 'France’.
Ecrire une requéte SQL permettant de récupérer les noms des 10 pays les plus peuplés, par ordre décroissant.
Ecrire une requéte SQL permettant de récupérer le nom du troisiéme pays le plus peuplé.

Ecrire une requéte SQL permettant de récupérer les noms des continents avec pour chacun sa population.
On supposera dans cette question que chaque pays appartient & un seul continent.

Spé MP - Informatique Tronc Commun 2025-2026

Exercice 2
I. Présentation

On considére le probléme suivant. Une grille est constituée de n lignes de p disques, chacun d’entre eux portant un
poids, ainsi que d’un point de départ (D) et d’un point d’arrivée (A). On appelle chemin une suite de disques telle
qu’a un disque succéde un autre situé dans la colonne suivante soit sur la méme ligne, soit sur la ligne au-dessus,
soit sur la ligne au-dessous (avec les restrictions évidentes si un disque est situé sur la premiére ou la derniére
ligne et avec la particularité que D méne & tous les disques de la premiére colonne et que tous les disques de la
derniére colonne ménent a A). Sur le graphe ci-dessous, un passage possible entre deux disques est représenté par
une fleche (appelée aussi arc). Le score d’un chemin est la somme des poids des disques visités. Un parcours de la
grille est un chemin partant de D et terminant en A. Le but du probléme est la recherche, dans cette grille, d’un
parcours de score maximal.

Une grille est représenté dans la figure 1, avec en grisé un parcours possible dans cette grille. Ce parcours grisé de
la figure 1 a donc un score de 16.

Nous allons envisager plusieurs stratégies pour résoudre ce probléme. Dans un premier temps, nous mettons en
place les structures de données permettant de le traiter.
2]

()
©

>

) 4

G

v

o

v
(%)

A

W

o
\@

O
.
O.

Figure 1 - Une grille avec un parcours

II. Représentation des données du probléme

Remarquons que pour représenter une grille on n’a pas besoin de représenter le point de départ et le point d’arrivée.
On représente donc une grille par une liste de listes Lgrille, la liste Lgrille[i] étant la liste des nombres portés
par les disques de la ligne i (la ligne du haut porte le numéro 0). Par exemple, la grille de la figure 1 est représentée
par la liste [[5,3,7,3,2],[4,1,6,2,3],[3,2,3,4,5]].

On obtient ainsi un systéme de repérage dans une grille : un disque est repéré par sa ligne (on utilisera également
le terme niveau) et par sa position sur la ligne (on utilisera également le terme colonne) ; on parlera du disque
(i,j) pour parler du disque situé sur la ligne i et la colonne j ; le poids porté par le disque (i,j) est ainsi
Lgrille[i] [j]. Par exemple, dans la grille de la figure 1, le disque (1,2) porte le nombre 6 et le disque (1,3)
porte le nombre 2.

Un parcours dans la grille est représenté par une liste 1Parcours de p entiers : la liste des niveaux (lignes) des
disques empruntés par le parcours a chaque colonne (on ne représentera pas D et A). Par exemple, le parcours
grisé sur la figure 2 est représenté par la liste [2,1,1,0,1].

Remarquons que si on avait voulu représenter un chemin quelconque, il aurait fallu une suite de couples (ou bien
donner également la colonne de départ).

1. Dessiner la grille représentée par la liste de listes [[3,4,5],[1,2,71,[4,9,4],[2,1,7]1]1 (y compris les
disque de départ et d’arrivée).
Griser (ou entourer les disques en une couleur différente) dans cette grille le parcours représenté par [2,3,3].
Calculer le score de ce chemin.

2. Ecrire une fonction scoreParcours(Lgrille ,lparcours) qui prend en paramétre une grille Lgrille et
un parcours lparcours (on ne demande pas de vérifier que ce parcours est valable) et qui renvoie le score
de ce parcours.

Spé MP - Informatique Tronc Commun 2025-2026

3. On pourrait (en théorie) résoudre ce probléme en calculant le score de chaque parcours et en déterminant le
score maximal.
En notant toujours n le nombre de niveaux de la grille et p son nombre de colonnes, déterminer une minoration
du nombre de ces parcours (on pourra minorer le nombre d’arcs sortant d’un disque par 2).
Quel type de complexité cette méthode exhaustive donnerait-elle 7

III. Stratégie gloutonne

On va tout d’abord résoudre le probléme de score maximal par une stratégie gloutonne. A chaque étape, on choisit
le disque suivant qui porte le poids de plus élevé. Plus précisément, on détermine tout d’abord le disque de la
premiére colonne portant le poids maximal (car tous ces disques sont accessibles a partir de D), puis a chaque
étape on détermine le disque suivant accessible portant le poids maximal.

4. Compléter la fonction scoreMaxGlouton(L) qui prend en entrée une grille L (on a raccourci Lgrille en
L pour simplifier I’écriture) et qui renvoie le score obtenu par cette stratégie dans cette grille ainsi que le
parcours emprunté pour obtenir ce score.

def scoreMaxGlouton (L):
n , p= len(L) , len(L[O])
score , lparcours = 0 , []
On détermine la ligne contenant le poids max
dans la premiére colonne
iMax , poidsMax = 0 , L[0][0]

for i in range(..., ...):
if
iMax , poidsMax = ...,
score = .
lparcours.append (...)

On parcourt ensuite la grille de gauche a droite

Si a 1’étape j-1 on se trouve au niveau i,

& 1l’étape j on pourra se trouver au niveau i, i-1 ou i+1
(si ces niveaux sont valables)

for j in range(l ,p):

iMaxSuivant , poidsMax = iMax , L[iMax][j]

if iMax - 1 >= 0 and L[iMax - 1][j] > poidsMax:
iMaxSuivant , poidsMax = ... ,

if

iMax = iMaxSuivant

score =

lparcours . append (...)

return score , lparcours

5. Quel score obtient-on par cette stratégie dans ’exemple de la figure 1 7
Obtient-on le score maximal ?

6. Quel est, en fonction du nombre de niveaux n et du nombre de colonnes p de la grille, la complexité de cette
méthode 7

Spé MP - Informatique Tronc Commun 2025-2026

IV. Algorithme récursif naif

On peut résoudre ce probléme de maniére récursive.

Ceci est basé sur la remarque suivante : si Pon connait le score maximal obtenu en partant des trois (dans le cas
général) disques accessibles a partir d’un disque (i, j), il suffit, pour obtenir le score maximal & partir ce disque
(i,3j) de prendre le maximum de ces trois scores et de lui ajouter le poids du disque (i, j).

On voit dans cette description que l'on doit généraliser le probléme et chercher & déterminer le score maximal que
Pon peut obtenir en partant d’un disque quelconque de la grille (et non plus uniquement des parcours) et en allant
jusqu’au disque A.

Rappelons qu’un disque est repéré par son niveau i (0 < i < n) et sa colonne j (0 < j < p). On notera M; ;
le score maximal que I’on peut obtenir en partant du disque situé en position j sur la ligne 7 et en allant jusqu’au
disque A. On adopte également la notation suivante : le poids porté par le disque situé en position j sur la ligne
i est noté L, ; (dans la liste de listes L, avec les conventions adoptées précédemment, il s’agit de L[1][j1).

Notre objectif final est donc de déterminer les valeurs de M, ¢ (0 <4 < m), puis le maximum parmi ces valeurs.
Remarquons que si j = p — 1, alors M; ; est égal & L; ;.

On illustre le principe du calcul récursif sur la figure suivante :
17

>< {3)
RS

Figure 2

{2)

()
()

(o)—(2)
O

Le disque grisé est en position (1,2). Pour connaitre le score maximal & partir de ce disque, il faut regarder les
trois disques auxquels on peut accéder & partir de celui-ci. On observe que My s =6, M1 3 =7 et Ma3 =9. Le
score maximal en partant de (1,2) sera donc obtenu en choisissant pour disque suivant le disque (2, 3) ; le score
obtenu est alors Mo = L1+ My 3 =6+9 = 15.

La remarque au début de ce paragraphe peut alors étre reformulée de maniére plus précise par les équations
suivantes :
Pour 0 < 1< n, Mi,p,1 = Li’pfl.
Pour 0 <j<p—1

>€
L

O

Ly j +max {M; i1, Mit1 511} sii=0
M;j =19 Lij+max{M;_y 41, M; 41, Miy1 511} si0O<i<n-—1
L +max {M;_1 11, M; j41} sii=n—1

7. Compléter la fonction récursive scoreMaxRecPart(L,i,j) qui prend en paramétre une grille L, un niveau
i et une colonne j (tous deux supposés valables) et qui renvoie, en utilisant la stratégie récursive décrite
précédemment, le score maximal que 'on peut obtenir en partant du disque repéré par (i,7) et en allant
jusqu’au disque A.

On demande que cette fonction ne manipule que des entiers (pas de création de liste). En pratique, lors des
appels récursifs, seules les valeurs des paramétres i et j changeront, pas celle de L
Remarquons :

e que cette fonction ne traite pas le choix du score maximal obtenu en partant de D ;

e que cette fonction doit renvoyer uniquement le score, et pas le chemin pour 1’obtenir.

Spé MP - Informatique Tronc Commun 2025-2026

8.

9.

def scoreMaxRecPart(L,i,j):

n , p = len(L) , len(L[O])

A 500 : # cas de base
return

CHNSICH:
on recherche le score max
parmi les trois (ou 2) successeurs de (i,j) en effectuant
un appel récursif a cette fonction pour chaque successeur

scoreMax = scoreMaxRecPart(L,i,j+1)
if i-1 >= 0: # pour écarter le cas 1i=0
score = scoreMaxRecPart(L , ... , ...)
if score > scoreMax:
scoreMax =
if :
score =
if
scoreMax =
return

Déduire de la fonction précédente une fonction scoreMaxRec (L) permettant de calculer le score maximum
d’un parcours, c’est a dire a partir du disque D.

Quelle est, en fonction de n et p, la complexité de la fonction scoreMaxRec (L) 7
On donnera une minoration, que l'on justifiera briévement.

V. Résolution par mémoization

La méthode récursive naive utilisée dans le paragraphe précédent donne une complexité mauvaise. Pour remédier
a cela, nous allons recourir a une méthode de mémoization, qui reprend la méthode récursive en évitant les appels
multiples & la fonction avec les mémes paramétres.

Pour cela, on stocke les résultats obtenus dans une grille de scores (représentée par une liste de listes Lscore de
mémes dimensions que la liste de listes représentant la grille) destinée & contenir M; ; et position (4,), et on ne
lance un appel récursif pour calculer le score maximal & partir d’un disque (i, j) qu’aprés avoir vérifié que ce disque
ne contient pas déja le score voulu.

10.

11.

12.

Représenter la grille des scores que 1’on doit obtenir aprés remplissage par cette méthode & partir de la grille
représentée sur la figure 1.

Ecrire une fonction grilleZeros(Lgrille) qui construit et renvoie une liste de listes aux mémes dimensions
que la grille représentée par Lgrille et contenant des 0.

Précisons l'organisation de notre méthode. La fonction effectuant les appels récursifs sera une fonction
auxiliaire remplitLscore(L,Lscore,i,j) qui ne renvoie rien mais remplit selon le principe décrit ci-dessus
la case (i,j) de la liste de listes contenant les scores Lscore. On désigne toujours par L la liste de listes
contenant les poids de la grille.

Compléter la fonction suivante afin qu’elle remplisse la case correspondant au disque (i, j) de Lscore suivant
la méthode expliquée ci-dessus.

Remarque : on considérera que tous les poids sont strictement positifs, de sorte que le fait que Lscore[i] [j]
est égal a 0 signale le fait que cette case n’a pas été traitée.

Spé MP - Informatique Tronc Commun 2025-2026

def remplitLscore(L,Lscore,i,j):

n ., p-= ...,
A 500 : # condition assurant que la case
mn’a pas déja été traitée
1 o0 : # cas de base
Lscore[i][j] =
else
remplitLscore(L,Lscore,i,j+1)
scoreMax = Lscore[i][j+1]

if i-1 >= 0:
remplitLscore (...
if c.. > scoreMax:
scoreMax =
if

if

Lscore [ij [J] =

13. Ecrire une fonction scoreMaxMemo (L) qui utilise la fonction précédente afin d’obtenir et de renvoyer le score
maximal que ’on peut obtenir avec la grille représentée par L.

VI. Programmation dynamique

Dans cette partie on met en place une approche par programmation dynamique. Pour cela, on va mémoriser les
résultats intermédiaires dans une nouvelle liste de listes (toujours notée Lscore), de mémes dimensions que L,
dont la case d’indice (¢, j) (position j sur le niveau i) est destinée & contenir la valeur de M; ;.

On rappelle que le principe de la programmation dynamique est de remplir la grille des scores maximaux «de bas
en haut »(ici de la droite de la grille a sa gauche) en exploitant les équations établies au IV.

14. On va tout d’abord écrire une fonction indMaxDisqueSuivant(Lscore,i,j) qui renvoie le niveau ind du
disque accessible a partir de (7, j) en lequel Lscore [ind] [j+1] est le plus grand. Cet indice sera donc choisi
parmi i, i-1, i+1 (sauf cas particuliers des premiére et derniére lignes).

Par exemple, en reprenant ’exemple de la figure 2, on a My 3 = 6, My 3 = 7et Mz 3 = 9. Le score maximal en
partant de (1,2) sera donc obtenu en choisissant pour disque suivant le disque (2, 3). La fonction précédente
doit donc renvoyer 2.

On fera attention & traiter a part lescasi=0et i =n — 1.

15. Ecrire une fonction LscoreProgDyn(L) qui crée, remplit (selon la méthode décrite au début de cette partie)
et renvoie une liste de listes Lscore contenant, pour chaque couple valable (7, j) de la liste L représentant la
grille, le score maximal du chemin partant du disque (4,) et allant jusqu’au disque A.

16. Ecrire une fonction scoreMaxProgDyn (L) qui utilise la fonction précédente afin d’obtenir et de renvoyer le
score maximal que 1’on peut obtenir pour un parcours de la grille représentée par L.

17. Quelle est, en fonction des dimensions de L, la complexité de cette fonction ?

En plus de déterminer le score maximal, on souhaite déterminer le parcours qui permet d’obtenir ce score.
Pour cela, on adapte la méthode précédente : en plus de construire une liste de listes Lscore, on va construire une
liste de listes aux mémes dimensions Lsuiv qui contient, , pour chaque couple valable (4, j) de la liste L représentant
la grille, le niveau du disque suivant le disque (4, j) sur le chemin permettant d’atteindre ce score maximal.

Pour les disques de la colonne p — 1, le niveau du disque suivant sera fixé a None.
Pour fixer les idées, reprenons la grille de la figure 2. Dans Lscore, la case (1,2) (représentant le disque grisé)
doit contenir le score 15). Dans Lsuiv, cette case devra contenir le niveau 2.

18. Représenter la grille Lsuiv correspondant a la grille représentée a la figure 1.

19. Détailler la reconstruction du parcours de score maximal pour la grille de la figure 1 & partir de la grille
Lsuiv construite a la question précédente.

Spé MP - Informatique Tronc Commun 2025-2026

20. Ecrire une fonction LscoreLsuivProgDyn (L) qui renvoie une couple constitué de Lscore et Lsuiv, obtenus
A partir de la grille représentée par L.

21. A partir de la fonction précédente, écrire une fonction ParcoursMaxiProgDyn (L) qui renvoie le parcours de
score maximal de la grille représentée par L.

