
Spé MP - Informatique Tronc Commun 2025-2026

CORRIGÉ DU DS 2 (Sans EX2, partie V)
le 18/12/2025 – Durée : 2h

• L’usage de la calculatrice n’est pas autorisé.

• La clarté et la précision des raisonnements interviendront pour une grande part dans la notation. La présen-
tation (en particulier les indentations) est également essentielle.

• Le résultat d’une question peut être admis afin de traiter une question suivante ; une fonction peut être
utilisée dans la suite d’un exercice même si elle n’a pas été écrite.

• Le barème tiendra compte de la longueur du devoir.

Exercice 1
1.

SELECT code_pays FROM Pays WHERE nom = ’France ’

2.
SELECT Pays.nom
FROM Pays JOIN Inclusion

ON Pays.code_pays = Inclusion.code_pays
WHERE Inclusion.continent = ’Europe ’

3.
SELECT SUM(longueur)
FROM Frontieres
WHERE code_pays1 = ’F’ OR code_pays2 = ’F’

4.
SELECT P.nom
FROM Frontieres AS Fr JOIN Pays AS P

ON Fr.code_pays2 = P.code_pays
WHERE Fr.code_pays1 = ’F’
UNION
SELECT P.nom
FROM Frontieres AS Fr JOIN Pays AS P

ON Fr.code_pays1 = P.code_pays
WHERE Fr.code_pays2 = ’F’

5. Écrire une requête SQL permettant de récupérer les noms des 10 pays les plus peuplés, par ordre décroissant.

SELECT nom
FROM Pays
ORDER BY population DESC LIMIT 10

6. Écrire une requête SQL permettant de récupérer le nom du troisième pays le plus peuplé.

SELECT nom
FROM Pays
ORDER BY population DESC LIMIT 1 OFFSET 3

7. Écrire une requête SQL permettant de récupérer les noms des continents avec pour chacun sa population.
On supposera dans cette question que chaque pays appartient à un seul continent.

SELECT I.continent , SUM(P.population)
FROM Pays AS P JOIN Inclusion AS I

ON P.code_pays = I.code_pays
GROUP BY I.continent

-1-

Spé MP - Informatique Tronc Commun 2025-2026

Exercice 2
I. Présentation

II. Représentation des données du problème

1.

1 2

4 9 4

2 1 7

7

D
A

3 4 5

Le score de ce chemin est de 4 + 1 + 7 = 12.
2.

def scoreParcours(Lgrille ,lparcours):
p = len(lparcours) # on peut aussi utiliser p = len(Lgrille [0])
s = 0
for i in range(p):

s += Lgrille[lparcours[i]][i]
return s

3. Pour le premier disque on a n choix. Ensuite à chacune des p − 1 étapes suivantes on a au moins 2 choix.
Le nombre de parcours est donc minoré par n× 2p−1.
On obtient ainsi une complexité exponentielle (en la composante p).

-2-

Spé MP - Informatique Tronc Commun 2025-2026

III. Stratégie gloutonne
4.

def scoreMaxGlouton(L):
n , p = len(L) , len(L[0])
score , lparcours = 0 , []
On détermine la ligne contenant le poids max dans la première colonne
iMax , poidsMax = 0 , L[0][0]
for i in range(1,n):

if L[i][0] > poidsMax:
iMax , poidsMax = i , L[i][0]

score += poidsMax
lparcours.append(iMax)
On parcourt ensuite la grille de gauche à droite
Si à l’étape j-1 on se trouve au niveau i,
à l’étape j on pourra se trouver au niveau i, i-1 ou i+1
(si ces niveaux sont valables)
for j in range(1,p):

iMaxSuivant , poidsMax = iMax , L[iMax][j]
if iMax - 1 >= 0 and L[iMax - 1][j] > poidsMax:

iMaxSuivant , poidsMax = iMax -1 , L[iMax -1][j]
if iMax + 1 < n and L[iMax + 1][j] > poidsMax:

iMaxSuivant , poidsMax = iMax+1 , L[iMax +1][j]
iMax = iMaxSuivant
score += poidsMax
lparcours.append(iMax)

return score , lparcours

5. Par cette stratégie on obtient dans l’exemple de la figure 1 le score de 21 (avec le parcours représenté par
[0, 0, 0, 0, 1]).
On constate que le parcours représenté par [0, 0, 1, 2, 2] donne un score de 23. On a donc pas obtenu
le score maximal par la stratégie gloutonne.

6. La première partie de la fonction consiste à trouver un maximum parmi n nombre. Cela nécessite de l’ordre
de n opérations.
Ensuite on effectue une boucle de longueur p− 1 avec à chaque itération un nombre d’opérations borné par
une constante (car on recherche un maximum parmi 3 valeurs).
La complexité de cette fonction est donc en ′(n+ p).

-3-

Spé MP - Informatique Tronc Commun 2025-2026

IV. Algorithme récursif naïf
7.

def scoreMaxRecPart(L,i,j):
n , p = len(L) , len(L[0])
if j == p-1:

return L[i][j]
else:

on recherche le score max parmi les trois (ou 2) successeurs de (i,j)
en effectuant un appel récursif à cette fonction pour chaque successeur
scoreMax = scoreMaxRecPart(L,i,j+1)
if i-1 >= 0:

score = scoreMaxRecPart(L,i-1,j+1)
if score > scoreMax:

scoreMax = score
if i+1 < n:

score = scoreMaxRecPart(L,i+1,j+1)
if score > scoreMax:

scoreMax = score
return scoreMax + L[i][j]

def scoreMaxRec(L):
n , p = len(L) , len(L[0])
sMax = scoreMaxRecPart(L,0,0)
for i in range(1,n):

score = scoreMaxRecPart(L,i,0)
if score > sMax:

sMax = score
return sMax

8.9. La boucle externe de scoreMaxRec(L) nécessite n appels à la fonction scoreMaxRecPart(L,i,0).
Notons C(j) le nombre d’opérations nécessaires (pour i quelconque) au calcul de scoreMaxRecPart(L,i,j).
L’appel à scoreMaxRecPart(L,i,j) nécessite au moins 2 appels au niveau j + 1. On en déduit que C(j) ≥
2C(j + 1). Ainsi C(0) va être de l’ordre de 2p−1. On retombe donc sur une complexité minorée par un
fonction de l’ordre de 2p−1.
Réponse plus sommaire : la résolution se fera en p−1 étapes avec à chaque étape au moins 2 appels récursifs.
D’où une complexité minorée par une fonction de l’ordre de 2p.

-4-

Spé MP - Informatique Tronc Commun 2025-2026

V. Résolution par mémoïzation

10.

23 18 6 2

22 16 15 7 3

20 17 12 9 5

14

D A

11.
def grilleZeros(Lgrille):

n , p = len(Lgrille) , len(Lgrille [0])
return [[0 for j in range(p)] for i in range(n)]

12.
def remplitLscore(L,Lscore ,i,j):

n , p = len(L) , len(L[0])
if Lscore[i][j] == 0:

if j == p-1:
Lscore[i][j] = L[i][j]

else :
remplitLscore(L,Lscore ,i,j+1)
scoreMax = Lscore[i][j+1]
if i-1 >= 0:

remplitLscore(L,Lscore ,i-1,j+1)
if Lscore[i-1][j+1] > scoreMax:

scoreMax = Lscore[i-1][j+1]
if i+1 < n :

remplitLscore(L,Lscore ,i+1,j+1)
if Lscore[i+1][j+1] > scoreMax:

scoreMax = Lscore[i+1][j+1]
Lscore[i][j] = scoreMax + L[i][j]

13.
def scoreMaxMemo(L):

n , p = len(L) , len(L[0])
Lscore = grilleZeros(L)
remplitLscore(Lgrille ,Lscore ,0,0)
scoreMax = Lscore [0][0]
for i in range(1,n):

remplitLscore(Lgrille ,Lscore ,i,0)
if Lscore[i][0] > scoreMax:

scoreMax = Lscore[i][0]
return scoreMax

-5-

