SPE MP 2025-2026 3- La norme du champ électrique en A est de 100 V-m™". Calculer une valeur approchée
du champ en B.

Exercice 2:¢lectrisation du sol .
EXERCICES ELECTROSTATIQUE . Lors d'un orage peut se développer au niveau du sol une zone chargée . On a

tracé ci-dessous les équipotentielles au niveau d'une aspérité , les graduations
sont en unités arbitraires . Le volume de I'aspérité est supposé équipotentiel .

Exercice 1 :lignes de champ .
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1- Représenter l'allure de quelques lignes de champ .
2- Quel est le signe de la charge portée par 'aspérité , vous justifierez la réponse
a l'aide du théoreme de Gauss .
& e | . — e == : 3-Dans quelles régions le champ est-il le plus intense .
i f - 4- Sur le diagramme , on admet que loin de 1'aspérité de champ est de
' 5kV.m™' , évaluer la valeur du champ électrique au sommet de I'aspérité .
5- La valeur du champ électrique maximal dans I'air ( champ disruptif’) est de
30kV.em™' . Commenter .
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Exercice 3:distributions sphériques .

A- On considere des particules chargées réparties uniformément avec une densité
volumique de charges po constante entre deux sphéres de méme centre O et de rayons
R1 et Rz( R2> Rl) .

1- Calculer le champ électrique en un point M a la distance r de O .

2- Déterminer la différence de potentiel entre les deux spheéres .

. ) ) ) ) En coordonnées sphériques :
On considére la carte de lignes de champ donnée ci-dessus, produite par trois fils N oU . 10U - 1 oU -
uniformément chargés. gradU=——u +— U, - u,
1- Quels sont les plans de symétrie de la distribution ? or r 0o rsin® o
2- Quel est le signe de la densité linéique de charge de chacun d’entre eux ?
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B- Une sphere de centre O et de rayon R porte une charge volumique p répartie
uniformément dans le volume qu’elle délimite sauf dans une cavité sphérique de centre
O1 creusée dans la sphere . Cette cavité est vide de charge .
Calculer le champ a I’intérieur de la cavité et souligner sa particularité .
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Exercice 4:
Données : relations de passage du champ électromagnétique de part et d'autre d'une
surface chargée

E(M,)—E(M,)= M 1;, M et M, étant deux points infiniment voisins de M
0

respectivement situés dans les milieu 1 et 2 et o ( M ) la densité surfacique de charge
au point M .

L . _ —qV(x), .
On considére le demi-espace x > 0 comportant nl(x )— n, CXP( T ) ions de
B
- _ qV(x)\ .
charge > 0 par unité de volume et nz(x )—noeXp( T ) ions de charge q <0
B
par unité de volume.
Le demi-espace est occupé par un conducteur massif équipotentiel V(x < 0)= V,
1- Déterminer une équation différentielle du second ordre vérifiée par
V(x>0).
2- On suppose L(x)<< 1 . Donner la forme de V(x) en posant D?= KT ey
pp kB T . p 2q2n0

3- Déterminer la densité surfacique de charge du plan x =0 (la relation de passage est
donnée ci-dessus ) .

Exercice 5:potentiel de Yukawa

Le physicien japonais Hideki Yukawa (Prix Nobel 1949) a postulé une forme de
potentiel pour traduire les interactions entre particules dans le noyau atomique. On
étudie ici ce potentiel comme s'il s'agissait d'un potentiel électrostatique.

Une distribution de charge a symétrie sphérique crée, a une distance r, un potentiel

V(”): dre, %GXP(%) Q et a étant des constantes

¢lectrostatique de la forme

positives.

1-Déterminer la charge q(r) contenue dans une sphére de centre O et de rayon r. 2-
Déterminer q(r) dans les deux cas extrémes : r tend vers zéro et r tend vers l'infini. En
déduire qualitativement la nature de la distribution de charge et donner une
interprétation de a.

3- Déterminer la charge contenue entre deux spheres de rayons r et r+dr , en déduire la
densité volumique de charge p(r).

4- Retrouver la densité volumique de charge p(r) a I'aide d'une équation locale de
I'électrostatique .

Exercice 6 :cylindre non uniformément chargé .

A P’intérieur d’un cylindre infini d’axe zz’ de rayon R , se trouvent des particules
r

p(r)=po[1+(%)’]

Déterminer le champ électrique créé en tout point de I’espace par cette répartition de
charges .

chargées réparties avec une densité volumique de charge

Exercice 7:

Une diode a vide est constituée de deux plaques métalliques planes paralleles (C) et
(A), de méme surface S et distantes de d, entre lesquelles a été fait le vide. La cathode
(C) est maintenue au potentiel O. Elle émet des électrons de vitesse négligeable qui se
dirigent vers 1'anode (A) qui est portée au potentiel U> O. On admet pour simplifier
que les trajectoires des électrons sont rectilignes perpendiculaires aux plaques. On se
place en régime permanent.

On note V(x) le potentiel électrostatique et v(x) la vitesse des électrons entre les
plaques a la distance x de (C).

Trouver I'expression de v(x) en fonction de V(x) et des caractéristiques d'un électron
(masse m, charge -¢).

Exercice 8:demi-espace non uniformément chargé

1-Réétablir I'expression du champ créé en tout de l'espace par un plan infini
uniformément chargé en surface .

2- On considere une distribution de charges d'extension infinie selon les
directions y et z telle que la densité volumique de charge soit nulle pour x <0 et

vaut p(x)zpoe%x pour x>0 .

Déterminer le champ créé en tout point de 1'espace par cette distribution de
charges .



Exercice 9: étoile liée a un nuage de gaz .
Un nuage de gaz est modélisé par un milieu continu de masse volumique po uniforme ,
compris entre les abscisses z=xa
1- Déterminer la géométrie du champ gravitationnel .
2- Calculer le champ gravitationnel en tout point de 1'espace .
Z
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Exercice 10 : pluviométre

La mesure des précipitations sur un territoire est importante pour prévoir I’évolution du
débit de ses cours d’eau, et gérer de maniére optimale les ressources en eau. Le volume
de précipitations est généralement mesuré a 1’aide d’un réseau de pluviometres répartis
sur le territoire, qui déterminent localement la hauteur d’eau tombée au sol par unité de
surface pendant un intervalle de temps donné.

Parmi les différents types de pluviométre qui existent, nous allons étudier dans cette
partie le fonctionnement d’un pluviomeétre capacitif, qui est basé sur la mesure d’une
capacité électrique.

Le pluviométre capacitif est modélisé par un condensateur constitué de deux armatures
cylindriques

coaxiales d’axe (Oz) et de hauteur H, comme représenté sur la figure en fin d'énoncé :
— ’armature intérieure de rayon a, est portée au potentiel V, et posséde une charge

Q > 0 répartie sur sa surface ;

— 1’armature extéricure de rayon a, est portée au potentiel V, (avec V, < V) et
posséde une charge - Q répartie sur sa surface.

On néglige les effets de bords dans cette étude, ce qui revient a considérer que la
hauteur des armatures

est infinie lors de la détermination du champ électrique. On considére le systéme de
coordonnées cylindriques du repére (O, il , ify, if.)

Dans un premier temps, on étudie le pluviometre en I’absence d’eau (Figure a gauche).
L’espace entre les deux armatures est alors rempli d’air, que 1’on assimile au vide.

1- Justifer, de fagon rigoureuse, que le champ électrique entre les deux armatures s’écrit

sous la forme : E(M)ZE(}”)LTV

2- A I’aide du théoréme de Gauss, déterminer I’expression de E(r) entre les deux
armatures en fonction

des données de 1’énoncé.

3- Exprimer la capacité C, du condensateur en fonction de V,, V, et Q.

4- En déduire I’expression de C, en fonction de a,, a, , H et de la permittivité
diélectrique du vide g .

5- Retrouver les résultats précédents a partir de la résolution de 1'équation de Laplace
dans l'espace inter-armature .

On étudie maintenant le pluviometre en présence d’eau (Figure a droite). Celui-ci étant
posé verticalement sur le sol, il s’est remplit progressivement d’eau lorsque de la pluie
est tombée dans 1’espace entre ses deux armatures cylindriques, et on note h la hauteur
d’eau qu’il contient a la fin d’une averse. L’eau étant un milieu dié¢lectrique qui est
caractérisé par sa permittivité diélectrique €, et on peut montrer que le théoréme de
Gauss reste valable dans un tel milieu a condition de remplacer €, par € .

6- Justifier que la capacité du condensateur en présence d’eau peut s’exprimer comme
la somme : C = C,, + Cy:avec Ce, la capacité de la partie du condensateur contenant de
I’eau, et C,;, la capacité de la partie du condensateur contenant de 1air.

7- En déduire que la capacité du condensateur peut s’exprimer sous la forme :
C(h)=Cy(Ah+ B)avec A et B des constantes que 1’on exprimera en fonction de €, g
et H.
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Pluviométre capacitif en 'absence d'eau (4 gauche), et sa vue de coupe en présence d’eau
(A droite).



oU
AU_la(rar) 10U 8
o 0r r? 002 0z?

Exercice 11 :moment dipolaire et molécules .
1- Le moment dipolaire de HF vaut 1,98 D. Sachant que la distance H—F dans
la molécule est de 91,8 pm, calculer les charges partielles portées par chaque
atome.

1D=0,33.10" " C.m
2- Dans l'échelle de Pauling , les ¢lectronégativités du soufre et de I'hydrogene
sont respectivement égales a 2,58 et 2,20 . Sachant que la molécule de sulfure
d'hydrogene est coudée avec un angle autour de l'atome de soufre de 92°, la
molécule est-elle polaire ? Si oui représenter le vecteur moment dipolaire sur un
dessin .

Exercice 12:distribution quadripolaire .

Soit O un point de I'espace ou I'on place une charge 2q . Deux points A et B
symétriques par rapport a O et distants de 2a portent la charge -q . On repére un
point M de l'espace grace a ses coordonnées sphériques d'axe OB ,reth,
définies parr=OMet 0=(OB,0M )

1- Déterminer le potentiel V(M) créé par cette distribution en un point M trés
¢loigné de O ( r>>a).

2- Calculer les composantes radiale et orthoradiale du champ électrique en M .
3- Déterminer les équations des équipotentielles et des lignes de champ .

Exercice 13 :forces de Van Der Waals
Si I'on place une molécule dépourvue de moment dipolaire permanent dans un

champ E,, ,lamolécule acquiert un moment dipolaire induit

ext
Dira=QE, E_';xt ( expression valable si le champ extérieur n'est pas trop intense

) a est appelé polarisabilité de la molécule .

Une molécule A a un moment dipolaire permanent p ,=p . . Sur l'axe ( AX)

du dipdle p, estplacée une molécule B dépourvue de moment dipolaire

permanent et de polarisabilité o .

1- a- On modélise la molécule A par un dipdle électrostatique composé de deux

charges -q et +q . Ces deux charges sont distantes de a . Donner I'expression du

champ créé a grande distance de la molécule A .
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P, B
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X>>a
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b- En déduire l'expression du moment dipolaire induit p; de la molécule B .
2- a- Déterminer l'expression de la force £ exercée par la molécule A sur la
molécule B .

b- Montrer qu'il s'agit d'une force attractive qui varieen x ' oux=AB.

c- Montrer que cette force dérive d'une énergie potentielle .

On appelle ce type de forces « les forces de Van Der Waals « .

Données : résultante des actions mécaniques exercées sur un dipdle de moment
P plongé dans un champ extérieur £,

R=(p.grad)(E,,)
Exercice 14 : dipdle dans un condensateur .
Un condensateur plan est constitué¢ de deux plans uniformément chargés , I'un
de charge surfacique -6 < 0 et d'abscisse x = -a <0, l'autre de charge o et
d'abscisse a sur un axe Ox perpendiculaire aux deux plans .

1- Déterminer le champ ¢€lectrique entre les armatures du condensateur supposé
idéal .

Un dipdle électrostatique p de module p est placé en O, l'angle qu'il fait avec
€. estnoté a .

2- Déterminer son énergie potentielle Ep en fonctionde o, p,c et o .

3- Discutez les positions d'équilibre de ce dipdle .

4- Modélisons ce dipdle par deux charges ponctuelles , N de charges -q <0

placée en x = b et P de charge q placée en x = -b . Elles sont de méme masse m .

a- Pourquoi le dipdle ne quitte-t-il pas sa position ?

b- Etudier les petites oscillations du dipdle autour de sa position d'équilibre

stable . Donner la période de ses oscillations .



