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Exercice 1     :lignes de champ .

On considère la carte de lignes de champ donnée ci-dessus, produite par trois fils
uniformément chargés.
1- Quels  sont les plans de symétrie de la distribution ?
2- Quel est le signe de la densité linéique de charge de chacun d’entre eux ?

3- La norme du champ électrique en A est de 100 V·m−1. Calculer une valeur approchée
du champ en B.

Exercice 2:électrisation du sol .
Lors d'un orage peut se développer au niveau du sol une zone chargée . On a 
tracé ci-dessous les équipotentielles au niveau d'une aspérité , les graduations 
sont en unités arbitraires . Le volume de l'aspérité est supposé équipotentiel .
      

1- Représenter l'allure de quelques lignes de champ . 
2- Quel est le signe de la charge portée par l'aspérité , vous justifierez la réponse
à l'aide du théorème de Gauss . 
3-Dans quelles régions le champ est-il le plus intense .
4- Sur le diagramme , on admet que loin de l'aspérité de champ est de

5 kV.m−1 , évaluer la valeur du champ électrique au sommet de l'aspérité .
5- La valeur du champ électrique maximal dans l'air ( champ disruptif ) est de

30kV.cm−1 . Commenter . 

Exercice 3:distributions sphériques . 
A- On considère  des particules chargées réparties uniformément avec une densité 
volumique de charges ρo constante entre deux sphères de même centre O et de rayons 
R1 et R2 ( R2 > R1 ) .
1- Calculer le champ électrique en un point M à la distance r de O . 
2- Déterminer  la différence de potentiel entre les deux sphères .

En coordonnées sphériques :
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B- Une sphère de centre O et de rayon R porte une charge volumique  répartie 
uniformément dans le volume qu’elle délimite sauf dans une cavité sphérique de centre 
O1 creusée dans la sphère . Cette cavité est vide de charge .
Calculer le champ à l’intérieur de la cavité et souligner sa particularité .

Exercice 4:
Données : relations de passage du champ électromagnétique de part et d'autre d'une 
surface chargée 

E⃗ (M 2)−E⃗ (M 1)=
σ(M )

ϵ0
n⃗12

M1 et M2 étant deux points infiniment voisins de M 

respectivement situés dans les milieu 1 et 2 et  σ ( M ) la densité surfacique de charge 
au point M . 

On considère le demi-espace x > 0 comportant n1( x)=n0 exp(
−qV ( x)

k BT
) ions de 

charge q> 0 par unité de volume et n2(x )=n0exp (
q V ( x)
k B T

) ions de charge q < 0 

par unité de volume. 
Le demi-espace est occupé par un conducteur massif équipotentiel V ( x<0)=V 0 .
1- Déterminer une équation différentielle du second ordre vérifiée par 
V( x > 0 ) .

2- On suppose
qV ( x)
k B T

≪1 . Donner la forme de V(x) en posant D²=
k BT ϵ0

2q²n0

.

3- Déterminer la densité surfacique de charge du plan  x = 0  ( la relation de passage est
donnée ci-dessus ) . 

Exercice 5:potentiel de Yukawa
Le physicien japonais Hideki Yukawa (Prix Nobel 1949) a postulé une forme de 
potentiel pour traduire les interactions entre particules dans le noyau atomique. On 
étudie ici ce potentiel comme s'il s'agissait d'un potentiel électrostatique.
Une distribution de charge à symétrie sphérique crée, à une distance r, un potentiel 

électrostatique de la forme V (r )=
1

4πϵ0

Q
r

exp(
−r
a

) Q et a étant des constantes 

positives.
1-Déterminer la charge q(r) contenue dans une sphère de centre O et de rayon r. 2-
Déterminer q(r) dans les deux cas extrêmes : r tend vers zéro et r tend vers l'infini. En 
déduire qualitativement la nature de la distribution de charge et donner une 
interprétation de a.
3- Déterminer la charge contenue entre deux sphères de rayons r et r+dr , en déduire  la 
densité volumique de charge ρ(r).
4- Retrouver la densité volumique de charge ρ(r) à l'aide d'une équation locale de 
l'électrostatique . 

Exercice 6     :cylindre non uniformément chargé . 
A l’intérieur d’un cylindre infini d’axe zz’ de rayon R , se trouvent des particules 

chargées réparties avec une densité volumique de charge  r =0[1
r
R

 ²]  . 

Déterminer le champ électrique créé en tout point de l’espace par cette répartition de 
charges  .

Exercice 7:
Une diode à vide est constituée de deux plaques métalliques planes parallèles (C) et 
(A), de même surface S et distantes de d, entre lesquelles a été fait le vide. La cathode 
(C) est maintenue au potentiel O. Elle émet des électrons de vitesse négligeable qui se 
dirigent vers l'anode (A) qui est portée au potentiel U> O. On admet pour simplifier 
que les trajectoires des électrons sont rectilignes perpendiculaires aux plaques. On se 
place en régime permanent. 
On note V(x) le potentiel électrostatique et v(x) la vitesse des électrons entre les 
plaques à la distance x de (C).
Trouver l'expression de v(x) en fonction de V(x) et des caractéristiques d'un électron 
(masse m, charge -e).

Exercice 8:demi-espace non uniformément chargé 
1-Réétablir l'expression du champ créé en tout de l'espace par un plan infini 
uniformément chargé en surface .
2- On considère une distribution de charges d'extension infinie selon les 
directions y et z telle que la densité volumique de charge soit nulle pour x < 0 et

vaut ρ(x)=ρ0 e
−x
a pour x > 0 .

Déterminer le champ créé en tout point de l'espace par cette distribution de 
charges . 
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Exercice     9: étoile liée à un nuage de gaz .
Un nuage de gaz est modélisé par un milieu continu de masse volumique µo uniforme , 
compris entre les abscisses z=±a .
1- Déterminer la géométrie du champ gravitationnel .
2- Calculer le champ gravitationnel en tout point de l'espace . 

Exercice 10 : pluviomètre 
La mesure des précipitations sur un territoire est importante pour prévoir l’évolution du
débit de ses cours d’eau, et gérer de manière optimale les ressources en eau. Le volume 
de précipitations est généralement mesuré à l’aide d’un réseau de pluviomètres répartis 
sur le territoire, qui déterminent localement la hauteur d’eau tombée au sol par unité de 
surface pendant un intervalle de temps donné.
Parmi les différents types de pluviomètre qui existent, nous allons étudier dans cette 
partie le fonctionnement d’un pluviomètre capacitif, qui est basé sur la mesure d’une 
capacité électrique.

Le pluviomètre capacitif est modélisé par un condensateur constitué de deux armatures 
cylindriques
coaxiales d’axe (Oz) et de hauteur H, comme représenté sur la figure en fin d'énoncé :
→  l’armature intérieure de rayon a1 est portée au potentiel V1 et possède une charge 
Q > 0 répartie sur sa surface ;
→  l’armature extérieure de rayon a2 est portée au potentiel V2 (avec V2 < V1 ) et 
possède une charge - Q répartie sur sa surface.
On néglige les effets de bords dans cette étude, ce qui revient à considérer que la 
hauteur des armatures
est infinie lors de la détermination du champ électrique. On considère le système de 
coordonnées cylindriques du repère (O ; u⃗r , u⃗θ , u⃗z)
Dans un premier temps, on étudie le pluviomètre en l’absence d’eau (Figure  à gauche).
L’espace entre les deux armatures est alors rempli d’air, que l’on assimile au vide.

1- Justifer, de façon rigoureuse, que le champ électrique entre les deux armatures s’écrit
sous la forme : E⃗ (M )=E (r ) u⃗r .
2- À l’aide du théorème de Gauss, déterminer l’expression de E(r) entre les deux 
armatures en fonction

des données de l’énoncé.
3- Exprimer la capacité C0 du condensateur en fonction de V1 , V2 et Q.
4-  En déduire l’expression de C0 en fonction de a1 , a2 , H et de la permittivité 
diélectrique du vide ε0 .
5- Retrouver les résultats précédents à partir de la résolution de l'équation de Laplace 
dans l'espace inter-armature . 

On étudie maintenant le pluviomètre en présence d’eau (Figure  à droite). Celui-ci étant
posé verticalement sur le sol, il s’est remplit progressivement d’eau lorsque de la pluie 
est tombée dans l’espace entre ses deux armatures cylindriques, et on note h la hauteur 
d’eau qu’il contient à la fin d’une averse. L’eau étant un milieu diélectrique qui est 
caractérisé par sa permittivité diélectrique ε, et on peut montrer que le théorème de 
Gauss reste valable dans un tel milieu à condition de remplacer ε0 par ε .

6- Justifier que la capacité du condensateur en présence d’eau peut s’exprimer comme 
la somme : C = Ceau + Cair avec Ceau la capacité de la partie du condensateur contenant de
l’eau, et Cair la capacité de la partie du condensateur contenant de l’air.
7- En déduire que la capacité du condensateur peut s’exprimer sous la forme :
C( h) = C0 (A h + B) avec A et B des constantes que l’on exprimera en fonction de ε, ε0 
et H.
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Exercice 11     :moment dipolaire et molécules .
1- Le moment dipolaire de HF vaut 1,98 D. Sachant que la distance H—F dans 
la molécule est de 91,8 pm, calculer les charges partielles portées par chaque 
atome.

1D=0,33 .10−29C.m
2-  Dans l'échelle de Pauling , les électronégativités du soufre et de l'hydrogène 
sont respectivement égales à 2,58 et 2,20 . Sachant que la molécule de sulfure 
d'hydrogène est coudée avec un angle autour de l'atome de soufre de 92° , la 
molécule est-elle polaire ? Si oui représenter le vecteur moment dipolaire sur un
dessin .

Exercice 12:distribution quadripolaire . 
Soit O un point de l'espace où l'on place une charge 2q . Deux points A et B 
symétriques par rapport  à O et distants de 2a portent la charge -q . On repère un
point M de l'espace grâce à ses coordonnées sphériques d'axe OB , r et θ , 
définies par r = OM et = OB , OM  .
1- Déterminer  le potentiel V(M) créé par cette distribution en un point M très 
éloigné de O ( r>>a).
2-  Calculer les composantes radiale et orthoradiale du champ électrique en M .
3- Déterminer les équations des équipotentielles et des lignes de champ .

Exercice 13     :forces de Van Der Waals
Si l'on place une molécule dépourvue de moment dipolaire permanent dans un 
champ E ext , la molécule acquiert un moment dipolaire induit

p ind=0
Eext ( expression valable si le champ extérieur n'est pas trop intense

) α est appelé polarisabilité de la molécule .
Une molécule A a un moment dipolaire permanent p A=p A u x . Sur l'axe ( Ax)
du dipôle p A est placée une molécule B dépourvue de moment dipolaire 
permanent et de polarisabilité α .
1- a- On modélise la molécule A par un dipôle électrostatique composé de deux 
charges -q et +q . Ces deux charges sont distantes de a .  Donner l'expression du 
champ créé à grande distance de la molécule A .

b- En déduire l'expression du moment dipolaire induit pB de la molécule B .
2- a- Déterminer l'expression de la force F exercée par la molécule A sur la 
molécule B .
b- Montrer qu'il s'agit d'une force attractive qui varie en x−7 où x = AB .
c- Montrer que cette force dérive d'une énergie potentielle .
On appelle ce type de forces «  les forces de Van Der Waals «  .

Données : résultante des actions mécaniques exercées sur un dipôle de moment
p⃗ plongé dans un champ extérieur E⃗ext  :

R⃗=( p⃗ . ⃗grad )( E⃗ ext )

Exercice 14     : dipôle dans un condensateur .
Un condensateur plan est constitué de deux plans uniformément chargés , l'un 
de charge surfacique -σ < 0 et d'abscisse x = -a < 0 , l'autre de charge σ et 
d'abscisse a sur un axe Ox perpendiculaire aux deux plans .
1- Déterminer le champ électrique entre les armatures du condensateur supposé 
idéal .

Un dipôle électrostatique p⃗ de module p est placé en O , l'angle qu'il fait avec
e⃗ x est noté α .

2- Déterminer son énergie potentielle Ep en fonction de α , p , σ et εo .
3- Discutez les positions d'équilibre de ce dipôle .
4- Modélisons ce dipôle par deux charges ponctuelles , N de charges -q < 0 
placée en x = b et P de charge q placée en x = -b . Elles sont de même masse m .
a- Pourquoi le dipôle ne quitte-t-il pas sa position ? 
b- Etudier les petites oscillations du dipôle autour de sa position d'équilibre 
stable . Donner la période de ses oscillations .
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