
Centre d’intérêt 1

Principe Fondamental de la Dynamique

PSI-MP : Lycée Rabelais

Cours de première année (et rappels) sur la mécanique

Cours sur le principe fondamental de la dynamique

Pré-requis

Être capable de déterminer une équation de mouvement

Être capable de déterminer une action mécanique si le mouvement des solides est solide

Objectifs

1 Estimation du "swingweight" d’une raquette de badmintonÆ

Raquette réelle Modélisation

x

y

z

dp

hp

hm

dt

Poignée

Manche

Tête

A

O

B

C

En badminton, la technicité de la raquette se doit d’être adaptée au type de jeu du joueur. Outre le poids de la raquette,

la position de son centre d’inertie ainsi que son moment d’inertie autour de l’axe de rotation du poignet du joueur

(A,−→x ) (appelé "swingweight" en anglais) sont des paramètres indispensables à connaître.

Le poids de la raquette est toujours bien renseigné par les constructeur mais la position du centre d’inertie et son moment

d’inertie sont souvent inconnus. On se propose ici d’estimer ces deux paramètres sur une géométrie de raquette donnée.

La raquette est composée : d’une poignée, d’un manche et d’une tête. On donne les dimensions et masses suivantes :

• Poignée (notée p), modélisée par un cylindre de masse mp = 40 g, de hauteur hp = 20 cm et de rayon rp = 0.9 cm. Son centre d’inertie est A et sa
matrice d’inertie est :

I[A, p] =
mp
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• Manche (noté m), modélisé par une tige de masse mm = 13 g et de hauteur hm = 19 cm. Son centre d’inertie est B et sa matrice d’inertie est :

I[B, m] =
mm

12





h2
m 0 0
0 0 0
0 0 h2

m





(−→x ,−→y ,−→z )

• Tête (notée t), modélisée par un anneau circulaire de masse mt = 22 g et de rayon rt = 14.5 cm. Son centre d’inertie est C et sa matrice d’inertie est :

I[C , t] =
mt
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Question 1. Donner la position du centre de gravité de l’ensemble de la raquette. Expliquer qualitativement l’influence

de ce paramètre sur le comportement de la raquette.

Question 2. Estimer maintenant le "swingweight" de la raquette. Quel élément de la raquette est le plus important

pour limiter le "swingweight" de la raquette ? L’ordre de grandeur du "swingweight" d’une raquette de tennis est 0.05

kg.m2. Comparer ces valeurs et commenter.

2 Inertie d’un boomerangÆ

Les aborigènes fabriquent et lancent des boomerangs depuis des millé-

naires. Mais les principes physiques sur lesquels repose son fascinant retour

leur sont longtemps restés inconnus. Et pour cause, les premières explica-

tions datent de 1837, et il a fallu attendre 1968 pour qu’une théorie plus

étoffée soit véritablement mise au point.

On se limite dans ce problème à l’étude des paramètres inertiels du

boomerang.

On propose la modélisation définie ci-dessous qui fixe la géométrie. La partie centrale du boomerang, notée R est

assimilée à une plaque carrée d’épaisseur e = 8 mm et de largeur lR = 50 mm. Les pâles, notées Pi , sont modélisées

par des plaques rectangulaires d’épaisseur e, de longueur lP = 160 mm et de largeur hP = 40 mm.

Le boomerang est en plastique de masse volumique ρ dont la valeur est inconnue. Le constructeur annonce une masse

de 65 grammes.
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Question 1. Déterminer la masse du boomerang en fonction des paramètres donnés. En utilisant la masse annoncée

par le constructeur, donner la valeur de la masse volumique du plastique utilisé. Expliquer pourquoi ce boomerang est

adapté à une utilisation sur la plage.

Question 2. En vous aidant du formulaire ci-dessous, déterminer la matrice d’inertie du boomerang. Faire les applica-

tions numériques.
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I[G, plaque] = mplaque
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3 Pendule de KapitzaÆÆ

On s’intéresse ici à un pendule inversé, dit pendule de Kapitza, représenté sur la figure ci-dessous. La tige du pendule,

notée 2, a la particularité d’être stable si le support mobile, noté 1, a un mouvement oscillatoire de fréquence élevée.
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Montage utilisé usuellement Modèle retenu

On considère ici que :

• Le support mobile est en liaison glissière avec le bâti. On note
−→
OA= a.−→z0 où a est une fonction du temps telle

que a(t) = A0. sin(ω.t).
• La liaison entre la tige et le support est une liaison pivot avec du frottement visqueux telle que

−→
M A,1→2.−→x0 = − f .α̇

où f est le coefficient de frottement visqueux et α= (−→y0,−→y2) = (
−→z0 ,−→z2 ) avec −→x0 =

−→x2.

• La tige du pendule a une masse m et son centre de gravité est G2 tel que
−−→
AG2 =

l
2
−→z2 . Le moment d’inertie de

cette tige autour de l’axe (A,−→x0) est noté J .

Question 1. Déterminer l’équation de mouvement faisant apparaître α et ses dérivées temporelles.

Question 2. Montrer qu’en l’absence de mouvement de la pièce 1, le pendule est instable.

4 Simulateur de volÆÆÆ

L’apprentissage du pilotage ou la qualification des pilotes sur un nouveau type d’appareil requiert de nombreuses heures

de formation "en situation". A cet effet, le simulateur de vol se substitue avantageusement au vol réel, tant au niveau

du coût de la formation que de l’étendue des situations qui peuvent être reproduites en toute sécurité. L’objectif de

cette partie est de vérifier que le simulateur permet de reproduire correctement la phase de décollage de l’avion. Les

performances de l’avion, ici un rafale en décollage sur un porte-avions, que l’on cherche à simuler sont données dans

le tableau ci-dessous :
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Distance pour le décollage 75 m

Vitesse de décollage 250 km/h

Vitesse de croisière 1715 km/h

Vitesse ascensionnelle 18 290 m/min

Pour l’étude dynamique proposée, on retiendra les notations et les hypothèses suivantes :

Notations :

t : variable temps

v(t) : vitesse de l’avion en fonction du temps

a : accélération de l’avion

x(t) : déplacement longitudinal de l’avion en fonction du temps

Hypothèses :

accélération constante durant la phase de dé-

collage ;

vitesse nulle à l’origine de la phase de décol-

lage ;

déplacement nul à l’origine de la phase de dé-

collage.

O x0

y0

G

Avion en phase de décollage sur un porte-avions

Question 1. A l’aide des données sur les performances de l’avion, calculer son accélération, notée a, pendant la phase

de roulage avant le décollage. Exprimée en m/s2, on arrondira à la valeur entière la plus proche.

On étudie ici la simulation d’une phase de décollage. Sur le simulateur considéré, il n’est pas possible de réaliser des

mouvements de translation longitudinaux dans la direction −→x0 ; pour palier cet inconvénient, les ingénieurs ont choisi

de faire sentir physiquement les effets de l’accélération au pilote en inclinant les différents éléments de la centrifugeuse.

Pour maintenir la sensation de ce mouvement uniformément accéléré, c’est le système de vision (grâce aux écrans LCD)

qui ensuite trompe le pilote en poursuivant le mouvement.

Deux situations sont bien distinguées ici :

Situation 1 : Dans le véritable avion en phase de décollage, le pilote assis sur son siège ressent les effets de la pesanteur

ainsi que de l’accélération de l’avion qui le plaque contre son siège. Dans cette situation, on propose le paramétrage

suivant :

−→
OG = x(t)−→x0 + h−→y0 et (−→x0,−→xa) = (

−→y0,−→ya) = 0

Situation 2 : Dans le simulateur, on met en mouvement différents éléments pour faire croire au pilote qu’il accélère.

Pour accroitre le ressenti, des images sont présentées au pilote sur un écran.

Nous allons comparer ces deux situations afin de déterminer la condition à vérifier pour que la sensation d’accélération

soit la plus réaliste possible.

Question 2. On considère le pilote installé dans l’avion (situation 1). Le mouvement de l’avion par rapport au référentiel

Galiléen R0 = (
−→x0,−→y0,−→z0 ) est une translation rectiligne d’accélération a constante. La masse du pilote est notée m et le

moment d’inertie du pilote par rapport à l’axe (G,−→za ) est noté IG . Déterminer le torseur des actions de liaison entre le
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pilote et son siège (on considère le pilote encastré sur le siège). Le pilote est supposé se comporter comme un solide

indéformable.

Les figures ci-dessous présentent une centrifugeuse où l’on reconnaît une structure cinématique ouverte à quatre corps

(support (0), bras (1), anneau (2) et nacelle (3)) assemblés par liaison pivot.
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Ce simulateur est donc constitué :

• d’un bras 1 de longueur OI = R, en liaison pivot d’axe (O,−→z0 ) par rapport au bâti 0. Sa position est paramétrée

par l’angle ψ.
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• d’un anneau 2 en liaison pivot d’axe (I ,−→x1) et de paramètre θ par rapport à l’axe (O,−→y1) lié au bras 1. θ est

l’angle de roulis.

• d’une nacelle 3 dans laquelle prend place le pilote, en liaison pivot d’axe (I ,−→y2) et de paramètre ϕ par rapport

à l’axe (I ,−→x2) lié à l’anneau 2. ϕ est l’angle de tangage. On suppose donc que le pilote est encastré avec la

nacelle 3.

L’actionneur de tangage est essentiellement dimensionné par les couples qu’il doit fournir durant les phases d’accélération

du bras. La vitesse du bras sera considérée comme variable.

Approche cinématique

On définit le vecteur accélération −→a I∈3/0.

On note aussi
−→
G = −→g −−→a I∈3/0 le vecteur qui caractérise le nombre de « g » subi par le pilote en I au cours de l’exercice.

L’accélération de la pesanteur −→g est telle que −→g = g−→z0 .

Question 3. Déterminer l’action du siège de la nacelle 3 sur le pilote. Exprimer notamment la résultante de 3 sur le

pilote en fonction de
−→
G .

Question 4. Calculer le vecteur
−→
V I∈3/0 du point I dans le mouvement de 3 par rapport à 0. Donner son expression en

projection dans la base (−→x1,−→y1,−→z1 ).

Question 5. Calculer le vecteur accélération −→a I∈3/0 en projection dans la base (−→x1,−→y1,−→z1 ).

Question 6. Projeter ce vecteur dans la base (−→x3,−→y3,−→z3 ) liée à la nacelle 3. On notera alors GX , GY , et GZ les com-

posantes.

Question 7. En déduire la condition sur θ pour générer une composante GY nulle en fonction de R, g et ψ.

Question 8. Dans cette condition, calculer GX et GZ .

Question 9. Quelles seront les ressentis du pilote dans les cas où ϕ = 0 et ϕ = π
2 (on se placera dans le cas où

ψ̇→ +∞).

Approche dynamique

On cherche maintenant à déterminer les couples :

• C01 qui permet la mise en rotation de l’ensemble { 1, 2, 3 } ;

• C23 qui permet l’inclinaison de la nacelle (3) par rapport à l’anneau (2).

On notera I(I , 3) =







A 0 0

0 B 0

0 0 A







(−→x2,−→y2,−→z2 )

: la matrice d’inertie du solide 3. Ce solide 3 est de masse m et de centre

d’inertie I . On négligera l’inertie de l’anneau (2). Le bras (1) possède un moment d’inertie J1 autour de l’axe (O,−→z0 ).

Question 10. Déterminer l’équation de mouvement permettant de faire intervenir le couple moteur C01. Se placer

dans le cas où θ̇ = 0 et ϕ̇ = 0.

Question 11. Déterminer maintenant l’équation de mouvement permettant de faire intervenir le couple moteur C23

(se placer également dans le cas où θ̇ = 0 et ϕ̇ = 0).

5 Roue autonome pour fauteuil roulantÆÆ

La roue autonome ez-Wheel propose une solution simple pour tracter des équipements de manutention et des véhicules

légers. Le stator de la roue ez-Wheel est fixé sur le châssis de l’engin à déplacer et son rotor est assemblé directement

sur sa roue.
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La solution intègre, au sein d’une roue, tous les composants nécessaires à la traction : motorisation électrique, batteries

haute énergie et longue durée, contrôleur de puissance assurant un pilotage optimal et gestion de la batterie ainsi

qu’une interface de commande sans fil. La transmission de l’énergie est réalisée par un variateur incorporé à la carte

de commande, un moteur brushless, puis un réducteur (voir figure ci-dessous).

Figure 1: Implantation et structure d’une roue ez-Wheel

Objectif : L’objectif de l’étude proposée est d’étudier l’implantation de la roue autonome sur un fauteuil roulant afin

de valider les performances du moteur implanté.

Les différentes normes relatives à l’accessibilité des espaces publics aux personnes à mobilité réduite imposent certaines

réalisations au niveau des accès aux bâtiments. Les escaliers, infranchissables pour une personne à mobilité réduite,

doivent être remplacés ou complétés par des rampes d’accès. Ces rampes peuvent avoir une pente maximale de 12%

(soit environ 6.8°).

Figure 2: Dimensions du fauteuil et paramétrage de l’étude en phase de montée d’une pente

La figure 2 donne les dimensions du fauteuil motorisé ainsi que le paramétrage en phase de montée. Les hypothèses

d’étude de cette partie sont les suivantes :

• Le référentiel R0(O,−→x0,−→y0,−→z0 ), lié au sol, est supposé galiléen.

• Le fauteuil se déplace en ligne droite dans une phase de montée, le problème est considéré comme plan. Le

référentiel R f (Of ,−→x f ,−→y f ,−→z f ) est lié au fauteuil avec −→y0 =
−→y f .

• L’accélération de la pesanteur est telle que −→g = −g −→z0 avec g = 9.81 m.s−2.

• Le vecteur position du fauteuil est
−−→
OOf = x(t) −→x f + R −→z f .
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• Chacun des motoréducteurs implanté dans les roues (gauche et droite) fournit le même couple, noté Cm (ils

peuvent fournir 70 Nm au maximum). Pour simplifier l’étude, le problème est supposé équivalent à un seul

motoréducteur qui fournit un couple 2 Cm sur une seule roue arrière.

• De la même manière les deux roues avant sont modélisées par une seule roue se situant dans le plan de l’étude.

• L’ensemble (S) = { fauteuil + roues avant + roues motorisées + utilisateur } a une masse MS de 150 kg, son

centre d’inertie est G.

• Le contact entre les roues arrières et le sol se fait avec frottement : le coefficient associé est f = 0.45.

• L’inertie et la masse des roues et celles des motoréducteurs sont négligés.

• Les roues arrières sont en liaisons pivots d’axe (Of ,−→y f ) par rapport au châssis du fauteuil.

• Les liaisons autres que celles des roues avec le sol sont considérées comme parfaites.

Les dimensions du fauteuil sont celles d’un fauteuil classique : e = 400 mm ; h = 600 mm ; H = 1000 mm ; l = 200

mm ; L = 1300 mm ; r = 150 mm et R= 400 mm.

Question 1 : Donner les expressions des torseurs des actions mécaniques transmissibles en faisant apparaître les com-

posantes nulles et le repère choisi :

a - du sol sur le fauteuil au niveau de la roue avant {Tsol→roue avant} au point N .

b - du sol sur le fauteuil au niveau de la roue arrière {Tsol→roue arriere} au point M .

c - de la pesanteur sur l’ensemble (S) {Tpoids→S} au point G.

Question 2 : En isolant les roues avant, montrer que l’effort tangentiel (suivant −→x f ) du sol sur les roues avant peut être

négligé.

Question 3 : Donner l’expression du moment dynamique galiléen de l’ensemble (S) en G, noté
−→
δ S/R0

(G).

Question 4 : Écrire les trois équations scalaires issues de l’application du principe fondamental de la dynamique à

l’ensemble (S) en projection dans R f au point G.

Question 5 : En déduire l’accélération maximale du fauteuil ẍ pour être à la limite du glissement. Faire l’application

numérique pour une pente en béton humide de 12 % ( f = 0.45).

Question 6 : En appliquant le théorème du moment dynamique à la roue arrière, déterminer la relation entre le couple

Cm et l’accélération ẍ . Faire l’application numérique dans les conditions de limite de glissement.

Question 7 : Pour cette valeur Cm, déterminer l’expression littérale puis la valeur numérique de l’action mécanique du

sol sur la roue avant. Conclure sur le comportement du fauteuil dans une telle configuration.

Pour la question suivante, le contact entre les roues arrière et le sol se fait toujours avec frottement mais n’est plus à la

limite du glissement. Le couple moteur est 70 Nm sur chacune des deux roues motorisées.

Question 8 : Calculer l’accélération du fauteuil. Les moteurs, mis en place sur le fauteuil, permettent-ils de respecter

les normes d’accès au bâtiment ? Le fauteuil risque t-il de basculer ?
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