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Principe Fondamental de la Dynamique

PSI-MP : Lycée Rabelais
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%@ Pré-requis
Cours de premiere année (et rappels) sur la mécanique

Cours sur le principe fondamental de la dynamique

Etre capable de déterminer une équation de mouvement

' Objectifs

Etre capable de déterminer une action mécanique si le mouvement des solides est solide

1 Estimation du "swingweight" d’une raquette de badminton %
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Raquette réelle Modélisation

En badminton, la technicité de la raquette se doit d’étre adaptée au type de jeu du joueur. Outre le poids de la raquette,

la position de son centre d’inertie ainsi que son moment d’inertie autour de I'axe de rotation du poignet du joueur
— s . " . \ o 1. N N

(A, X)) (appelé "swingweight" en anglais) sont des parameétres indispensables a connaitre.

Le poids de la raquette est toujours bien renseigné par les constructeur mais la position du centre d’inertie et son moment
d’inertie sont souvent inconnus. On se propose ici d’estimer ces deux parametres sur une géométrie de raquette donnée.
La raquette est composée : d'une poignée, d’un manche et d’une téte. On donne les dimensions et masses suivantes :

e Poignée (notée p), modélisée par un cylindre de masse m, = 40 g, de hauteur h, = 20 cm et de rayon r, = 0.9 cm. Son centre d’inertie est A et sa
matrice d’inertie est :
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e Manche (noté m), modélisé par une tige de masse m,, = 13 g et de hauteur h,, = 19 cm. Son centre d’inertie est B et sa matrice d’inertie est :
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e Téte (notée t), modélisée par un anneau circulaire de masse m, = 22 g et de rayon r, = 14.5 cm. Son centre d’inertie est C et sa matrice d’inertie est :
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Question 1. Donner la position du centre de gravité de 'ensemble de la raquette. Expliquer qualitativement l'influence

de ce parametre sur le comportement de la raquette.

Question 2. Estimer maintenant le "swingweight" de la raquette. Quel élément de la raquette est le plus important
pour limiter le "swingweight" de la raquette ? L'ordre de grandeur du "swingweight" d'une raquette de tennis est 0.05

kg.m?. Comparer ces valeurs et commenter.

2 Inertie d’un boomerang %

Les aborigénes fabriquent et lancent des boomerangs depuis des millé-
naires. Mais les principes physiques sur lesquels repose son fascinant retour
leur sont longtemps restés inconnus. Et pour cause, les premieres explica-

tions datent de 1837, et il a fallu attendre 1968 pour qu'une théorie plus
étoffée soit véritablement mise au point.

On se limite dans ce probleme a l'étude des parametres inertiels du
boomerang.

On propose la modélisation définie ci-dessous qui fixe la géométrie. La partie centrale du boomerang, notée R est
assimilée a une plaque carrée d’épaisseur e = 8 mm et de largeur [ = 50 mm. Les péles, notées P;, sont modélisées

par des plaques rectangulaires d’épaisseur e, de longueur [, = 160 mm et de largeur hp = 40 mm.

Le boomerang est en plastique de masse volumique p dont la valeur est inconnue. Le constructeur annonce une masse

de 65 grammes.
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Question 1. Déterminer la masse du boomerang en fonction des parametres donnés. En utilisant la masse annoncée
par le constructeur, donner la valeur de la masse volumique du plastique utilisé. Expliquer pourquoi ce boomerang est

adapté a une utilisation sur la plage.

Question 2. En vous aidant du formulaire ci-dessous, déterminer la matrice d’inertie du boomerang. Faire les applica-

tions numériques.
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3 Pendule de Kapitza % %

On s’intéresse ici a un pendule inversé, dit pendule de Kapitza, représenté sur la figure ci-dessous. La tige du pendule,
notée 2, a la particularité d’étre stable si le support mobile, noté 1, a un mouvement oscillatoire de fréquence élevée.
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On consideére ici que :

—
e Le support mobile est en liaison glissiére avec le bati. On note OA = a.z, ol a est une fonction du temps telle
que a(t) =Ag.sin(w.t).
e Laliaison entre la tige et le support est une liaison pivot avec du frottement visqueux telle que M 4 1_,5.X9 = —f.a
oll f est le coefficient de frottement visqueux et a = (g, y5) = (zg, 2 ) avec xg = X5.

_) l
e La tige du pendule a une masse m et son centre de gravité est G, tel que AG, = EZ—Z) Le moment d’inertie de

cette tige autour de I'axe (A, Xg) est noté J.
Question 1. Déterminer 'équation de mouvement faisant apparaitre a et ses dérivées temporelles.

Question 2. Montrer qu’en 'absence de mouvement de la piéce 1, le pendule est instable.

4 Simulateur de vol % % %

’apprentissage du pilotage ou la qualification des pilotes sur un nouveau type d’appareil requiert de nombreuses heures
de formation "en situation". A cet effet, le simulateur de vol se substitue avantageusement au vol réel, tant au niveau
du cofit de la formation que de I'étendue des situations qui peuvent étre reproduites en toute sécurité. L'objectif de
cette partie est de vérifier que le simulateur permet de reproduire correctement la phase de décollage de I'avion. Les
performances de I’avion, ici un rafale en décollage sur un porte-avions, que 'on cherche & simuler sont données dans

le tableau ci-dessous :



Distance pour le décollage 75 m
Vitesse de décollage 250 km/h
Vitesse de croisiére 1715 km/h

Vitesse ascensionnelle 18 290 m/min

Pour I'étude dynamique proposée, on retiendra les notations et les hypothéses suivantes :

Hypotheses :
Notations : accélération constante durant la phase de dé-
t : variable temps collage ;
v(t) : vitesse de I'avion en fonction du temps vitesse nulle a l'origine de la phase de décol-
a : accélération de 'avion lage ;
x(t) : déplacement longitudinal de I'avion en fonction du temps déplacement nul a l'origine de la phase de dé-
collage.

Avion en phase de décollage sur un porte-avions

Question 1. A l'aide des données sur les performances de 1’avion, calculer son accélération, notée a, pendant la phase

de roulage avant le décollage. Exprimée en m/s?, on arrondira a la valeur entiére la plus proche.

On étudie ici la simulation d’'une phase de décollage. Sur le simulateur considéré, il n’est pas possible de réaliser des
mouvements de translation longitudinaux dans la direction xg ; pour palier cet inconvénient, les ingénieurs ont choisi
de faire sentir physiquement les effets de ’accélération au pilote en inclinant les différents éléments de la centrifugeuse.
Pour maintenir la sensation de ce mouvement uniformément accéléré, c’est le systéme de vision (grace aux écrans LCD)

qui ensuite trompe le pilote en poursuivant le mouvement.
Deux situations sont bien distinguées ici :

Situation 1 : Dans le véritable avion en phase de décollage, le pilote assis sur son siege ressent les effets de la pesanteur
ainsi que de 'accélération de I'avion qui le plaque contre son siége. Dans cette situation, on propose le paramétrage

suivant :

0G = x(t)xg +hyq et (g, X2) = (V0. 72) = 0

Situation 2 : Dans le simulateur, on met en mouvement différents éléments pour faire croire au pilote qu’il accélére.

Pour accroitre le ressenti, des images sont présentées au pilote sur un écran.

Nous allons comparer ces deux situations afin de déterminer la condition a vérifier pour que la sensation d’accélération

soit la plus réaliste possible.

Question 2. On considere le pilote installé dans I'avion (situation 1). Le mouvement de I'avion par rapport au référentiel
Galiléen Ry = (Xg, Yo, o) est une translation rectiligne d’accélération a constante. La masse du pilote est notée m et le
moment d’inertie du pilote par rapport a I'axe (G, z_a)) est noté I;. Déterminer le torseur des actions de liaison entre le



pilote et son siége (on considére le pilote encastré sur le siége). Le pilote est supposé se comporter comme un solide
indéformable.

Les figures ci-dessous présentent une centrifugeuse ot 'on reconnait une structure cinématique ouverte a quatre corps
(support (0), bras (1), anneau (2) et nacelle (3)) assemblés par liaison pivot.

0,bati

2,anneau

Xo 20=2; Y1 X1 = Xy Z; Yo =VYs3
X1 Y2 Z3
vy o\ ¢\
v > z o X
Yo Y1 Z; 2 X 3

Détail de la position du pilote
dans la nacelle 3

Ce simulateur est donc constitué :

e d’un bras 1 de longueur OI =R, en liaison pivot d’axe (O, zy) par rapport au bati 0. Sa position est paramétrée
par I'angle 1.



e d’un anneau 2 en liaison pivot d’axe (I,X;) et de parameétre 6 par rapport a 'axe (O, y;) lié au bras 1. 6 est
I'angle de roulis.

e d’une nacelle 3 dans laquelle prend place le pilote, en liaison pivot d’axe (I,y,) et de paramétre  par rapport
a laxe (I,x;) lié & l'anneau 2. ¢ est langle de tangage. On suppose donc que le pilote est encastré avec la

nacelle 3.

L'actionneur de tangage est essentiellement dimensionné par les couples qu’il doit fournir durant les phases d’accélération
du bras. La vitesse du bras sera considérée comme variable.

Approche cinématique
JT ) 117 . —>
On définit le vecteur accélération a je3/0-

On note aussi G = g — dje3/0 le vecteur qui caractérise le nombre de « g » subi par le pilote en I au cours de I'exercice.

Laccélération de la pesanteur g est telle que g = gz_o).

Question 3. Déterminer 'action du siége de la nacelle 3 sur le pilote. Exprimer notamment la résultante de 3 sur le
q
pilote en fonction de G.

ﬁ . Y .
Question 4. Calculer le vecteur V jc3/9 du point I dans le mouvement de 3 par rapport a 0. Donner son expression en

projection dans la base (X7, y1, 21 ).
Question 5. Calculer le vecteur accélération @ Ie3/0 €N projection dans la base (X1, Y1, 21)-

Question 6. Projeter ce vecteur dans la base (x3, )7)3,2_3)) liée a la nacelle 3. On notera alors Gy, Gy, et G, les com-

posantes.
Question 7. En déduire la condition sur 6 pour générer une composante Gy nulle en fonction de R, g et 1.
Question 8. Dans cette condition, calculer Gy et G.

Question 9. Quelles seront les ressentis du pilote dans les cas ot ¢ = 0 et ¢ = 5 (on se placera dans le cas ol
2 — +00).

Approche dynamique
On cherche maintenant a déterminer les couples :

e Cy; qui permet la mise en rotation de I'ensemble { 1, 2, 3 } ;
e (C,5 qui permet I'inclinaison de la nacelle (3) par rapport a 'anneau (2).

A 0 O
On notera I(I,3) = [0 B O : la matrice d’inertie du solide 3. Ce solide 3 est de masse m et de centre
0 0 Al -

(szz:Zz)
d’inertie I. On négligera I'inertie de 'anneau (2). Le bras (1) possede un moment d’inertie J; autour de I'axe (O, z_o)).

Question 10. Déterminer I'équation de mouvement permettant de faire intervenir le couple moteur Cy;. Se placer

dans le cas ot 6 =0 et ¢ = 0.

Question 11. Déterminer maintenant '’équation de mouvement permettant de faire intervenir le couple moteur Cs5

(se placer également dans le cas ou 0 =0et ¢ =0).

5 Roue autonome pour fauteuil roulant s %

La roue autonome ez-Wheel propose une solution simple pour tracter des équipements de manutention et des véhicules
légers. Le stator de la roue ez-Wheel est fixé sur le chassis de 'engin & déplacer et son rotor est assemblé directement

sur sa roue.



La solution integre, au sein d’'une roue, tous les composants nécessaires a la traction : motorisation électrique, batteries
haute énergie et longue durée, controleur de puissance assurant un pilotage optimal et gestion de la batterie ainsi
qu'une interface de commande sans fil. La transmission de 1'énergie est réalisée par un variateur incorporé a la carte

de commande, un moteur brushless, puis un réducteur (voir figure ci-dessous).

moteur ¢ réducteur

’T\ ;/ ez- Wheel
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batteries carte de commande

Figure 1: Implantation et structure d'une roue ez-Wheel

Objectif : L'objectif de ’étude proposée est d’étudier I'implantation de la roue autonome sur un fauteuil roulant afin
de valider les performances du moteur implanté.

Les différentes normes relatives a ’accessibilité des espaces publics aux personnes a mobilité réduite imposent certaines
réalisations au niveau des accés aux batiments. Les escaliers, infranchissables pour une personne a mobilité réduite,
doivent étre remplacés ou complétés par des rampes d’acces. Ces rampes peuvent avoir une pente maximale de 12%
(soit environ 6.8°).

Figure 2: Dimensions du fauteuil et paramétrage de I'étude en phase de montée d’'une pente

La figure 2 donne les dimensions du fauteuil motorisé ainsi que le paramétrage en phase de montée. Les hypotheses
d’étude de cette partie sont les suivantes :

e Le référentiel Ry(O, Xg, Yo, 2o ), lié au sol, est supposé galiléen.

e Le fauteuil se déplace en ligne droite dans une phase de montée, le probleme est considéré comme plan. Le
référentiel R¢ (O, ﬁ, y.f), z_f)) est lié au fauteuil avec 70) = ﬁ

e Laccélération de la pesanteur est telle que g = —g z_o) avec g = 9.81 m.s™2.

e Le vecteur position du fauteuil est 00; = x(t) xf +R 2.



e Chacun des motoréducteurs implanté dans les roues (gauche et droite) fournit le méme couple, noté C,, (ils
peuvent fournir 70 Nm au maximum). Pour simplifier 'étude, le probléme est supposé équivalent a un seul
motoréducteur qui fournit un couple 2 C,, sur une seule roue arriere.

e De la méme maniere les deux roues avant sont modélisées par une seule roue se situant dans le plan de I'étude.

e Lensemble (S) = { fauteuil + roues avant + roues motorisées + utilisateur } a une masse Mg de 150 kg, son
centre d’inertie est G.

e Le contact entre les roues arrieres et le sol se fait avec frottement : le coefficient associé est f = 0.45.

e Linertie et la masse des roues et celles des motoréducteurs sont négligés.

e Les roues arriéres sont en liaisons pivots d’axe (of,yf’) par rapport au chéssis du fauteuil.

e Les liaisons autres que celles des roues avec le sol sont considérées comme parfaites.

Les dimensions du fauteuil sont celles d’un fauteuil classique : e = 400 mm ; h = 600 mm ; H = 1000 mm ; [ = 200
mm ; L = 1300 mm ; r = 150 mm et R = 400 mm.

Question 1 : Donner les expressions des torseurs des actions mécaniques transmissibles en faisant apparaitre les com-
posantes nulles et le repere choisi :

a - du sol sur le fauteuil au niveau de la roue avant {Z;,;_,oue avane } @0 point N.
b - du sol sur le fauteuil au niveau de la roue arriére {Z; 1, oue arriere} @l point M.

c - de la pesanteur sur 'ensemble (S) {7,455} au point G.

Question 2 : En isolant les roues avant, montrer que I'effort tangentiel (suivant x_f)) du sol sur les roues avant peut étre
négligé.

. . . 1 7 7 -
Question 3 : Donner I'expression du moment dynamique galiléen de I'ensemble (S) en G, noté 6 g/g (G).

Question 4 : Ecrire les trois équations scalaires issues de I'application du principe fondamental de la dynamique a
Iensemble (S) en projection dans Ry au point G.

Question 5 : En déduire 'accélération maximale du fauteuil ¥ pour étre a la limite du glissement. Faire I'application
numérique pour une pente en béton humide de 12 % (f = 0.45).

Question 6 : En appliquant le théoréme du moment dynamique a la roue arriere, déterminer la relation entre le couple
C,, et 'accélération x. Faire 'application numérique dans les conditions de limite de glissement.

Question 7 : Pour cette valeur C,,, déterminer I'expression littérale puis la valeur numérique de I'action mécanique du
sol sur la roue avant. Conclure sur le comportement du fauteuil dans une telle configuration.

Pour la question suivante, le contact entre les roues arriere et le sol se fait toujours avec frottement mais n’est plus a la
limite du glissement. Le couple moteur est 70 Nm sur chacune des deux roues motorisées.

Question 8 : Calculer I'accélération du fauteuil. Les moteurs, mis en place sur le fauteuil, permettent-ils de respecter
les normes d’acceés au batiment ? Le fauteuil risque t-il de basculer ?
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