
Spé MP - Informatique Tronc Commun 2025/2026

Introduction à la théorie des jeux

Introduction

Nous nous intéressons dans ce cours à la modélisation de certains jeux à deux joueurs (jeu de Nim,
tic-tac-toe, jeu d’échecs ...). L’objectif pour chacun de ces jeux est de déterminer (si possible) une
stratégie gagnante, ou du moins optimale selon certains critères. Nous nous appuierons pour cela sur la
représentation de ces jeux par des graphes.

1 Modèle général

Afin de dégager les notions générales, nous nous appuyons sur l’exemple du jeux de chomp. Le principe
de ce jeu est le suivant : on dispose d’une tablette de chocolat de taille (n, p). Le carré en haut à gauche
est empoisonné. Chacun des deux joueurs, à son tour, casse la tablette suivant une ligne verticale ou
horizontale et mange la partie de la tablette qu’il a détachée de la partie principale (celle qui contient le
carré empoisonné). Le joueur ne disposant plus que du carré empoisonné lorsque c’est son tour de jouer
a perdu (et l’autre a gagné).
Un tel jeu est appelé jeu d’accessibilité à deux joueurs.

Question 1.1 Représenter l’ensemble des configurations possibles et les joindre par un arc lorsque l’on
peut passer de l’une à l’autre (on prendra (n, p) = (2, 3)).

Pour tenir compte de la règle du jeu à deux joueurs, on va construire un autre graphe pour représenter ce
jeu. On note respectivement J1 et J2 les deux joueurs, avec la convention que J1 est le premier joueur à
jouer. Le nouveau graphe a pour sommets l’ensemble des états possibles du jeu, un état étant constitué
des informations suivantes : taille de la tablette à ce moment du jeu et joueur ayant la main. Par exemple,
si le morceau de tablette restant est de taille (2, 2) et que J1 a la main, on notera (2, 2, 1) l’état du jeu.
Un arc relie deux sommets lorsque l’on peut passer de l’un à l’autre en une étape du jeu. Remarquons
qu’un tel graphe a des sommets de deux catégories : ceux pour lesquels J1 a la main et ceux pour lesquels
J2 a la main. Les arêtes relient nécessairement des sommets de catégories différentes. Un tel graphe est
dit biparti.
Pour achever de représenter le jeux, il reste à faire figurer le sommet de départ ainsi que ceux où le jeu
s’achève.

-1-

Spé MP - Informatique Tronc Commun 2025/2026

Question 1.2 Représenter le graphe décrit ci dessus pour le jeu de chomp (on prendra toujours (n, p) =
(2, 3)). On mettra les états pour lesquels un même joueur a la main sur une même ligne.

L’exemple que nous avons pris est caractéristique des jeux d’accessibilité ayant les caractéristiques suiv-
antes :

• le jeu est à information complète ;

• le jeu est déterministe ;

• les joueurs jouent à tour de rôle.

La formalisation d’un tel jeu se fait à travers la notion dégagée précédemment de graphe biparti. Plus
précisément, on définit un jeu d’accessibilité à deux joueurs J1 et J2 comme étant un graphe orienté fini
(S,A) appelé arène tel que :

• il existe une partition S = S1 ∪ S2 et les arcs vont de Si à Sj pour i ̸= j ;

• un sommet de départ s0 est donné ;

• est également donnée une partition de l’ensemble F des états finaux : F = G1 ∪ G2 ∪ N (états
finaux gagnants pour J1, J2 et états nuls).

Une partie est un chemin de ce graphe qui commence en s0 et qui finit en un sommet de F .

2 Une première stratégie de résolution

Question 2.1 Décrire de manière informelle une stratégie gagnante pour le joueur J1 dans le cas du jeu
de chomp ((2, 3)).

Étant donné une arène telle que décrite dans le paragraphe précédent (et en gardant les mêmes notations),
une stratégie pour le joueur Ji est une application f : Si → S telle que pour tout s ∈ Si, (s, f(s))
appartienne à l’ensemble A des arcs.
Une stratégie est dite gagnante lorsque toute partie jouée selon cette stratégie est gagnante.

-2-

Spé MP - Informatique Tronc Commun 2025/2026

Question 2.2 Décrire de manière plus formelle (en explicitant la fonction f) une stratégie gagnante
pour le joueur J1 dans le cas du jeu de chomp ((2, 3)).

Afin de déterminer une stratégie gagnante dans le cas général, on définit la notion d’attracteur. Pour un
sous-ensemble H de S, on appelle attracteur d’ordre n de H pour le joueur i l’ensemble des sommets à
partir desquels le joueur i a une stratégie telle que la partie mène nécessairement à un sommet de H en
au plus n coups.
Plus précisément, on définit cet attracteur Atni par récurrence de la manière suivante (on note j l’autre
joueur) :

• At0i (H) = H ;

• Atn+1
i (H) est constitué :

– des éléments de Atni (H) ;

– des sommets s de Si tels qu’il existe une arête issue de s menant à Atni (H) ;

– des sommets s de Sj tels que toutes les arêtes issues de s mènent à Atni (H).

Question 2.3 Reprendre le graphe biparti représentant le jeu de chomp ((2, 3)) et construire les at-
tracteurs de rangs successifs du sommet gagnant pour J1.

Cette suite d’attracteurs a les propriétés suivantes :

• Elle est croissante et stationnaire (à partir au plus du rang Card(S)) ; on note Ati(H) leur réunion.

• Les positions gagnantes pour Ji sont les éléments de Ati(Gi).

• Le joueur Ji possède une stratégie gagnante si et seulement si le sommet de départ s0 est dans
Ati(Gi). Dans ce cas, la détermination de la suite des Atni (Gi) permet de définir cette stratégie.

-3-

Spé MP - Informatique Tronc Commun 2025/2026

Question 2.4 Nous allons maintenant écrire un algorithme permettant de déterminer l’ensemble des
positions gagnantes pour un joueur (toujours dans le cas du jeu de chomp).
Un graphe sera représenté par un dictionnaire : les clefs sont les sommets et la valeur associée à chaque
clef s est la liste des sommets accessibles à partir de s.
Le fichier chomp_ACompleter.py contient des trames pour les fonctions demandées ci-dessous.

1. On pourrait bien écrire ces dictionnaires de manière explicite pour le jeu de chomp((2, 3)). On va
plutôt écrire deux fonctions graphChomp(n,p) et graphBipartiChomp(n,p) renvoyant les diction-
naires représentant ces graphes.
Afin de tester ces fonctions, on pourra écrire tout d’abord ces dictionnaires à la main.

2. On aura besoin de fonctions permettant d’une part de tester si on peut atteindre un sous-ensemble
de sommets (représenté par une liste de sommets) à partir d’un sommet s et d’autre part si toutes
les arêtes issues d’un sommet s mènent à un sous-ensemble donné. Compléter ces fonction dans le
fichier .py.

3. Écrire une fonction attracteurChomp(n,p,joueur) permettant de déterminer l’attracteur du som-
met gagnant pour le joueur joueur.
Tester sur l’exemple fait auparavant à la main.

4. Écrire une fonction strategieChomp(n,p,joueur,pos) qui, étant donné une position pos dans
laquelle se trouve joueur, doit renvoyer une position (de l’autre joueur) qui assurera le gain de la
partie pour joueur (c’est à dire une position dans l’attracteur de la position gagnante de joueur).

3 Algorithme du min-max

3.1 Introduction

On a abordé dans le paragraphe précédent une situation de jeu dans laquelle à l’aide d’un graphe on
pouvait identifier les positions gagnantes et dégager une stratégie à partir de ces positions. Cela était
possible car le graphe associé au jeu (l’arène) était très petite. Il est clair que dans de nombreux jeux
(échecs, go, puissance quatre ...), on n’est pas dans cette situation : les positions possibles du jeu sont
en très grand nombre et il est impossible de les traiter de manière exhaustive.
Dans ces situations, on met en œuvre une autre stratégie dont le principe est le suivant. On associe à
chaque situation de jeu un score à travers une fonction appelée fonction d’utilité. Plus la position est
bonne (pour un joueur), plus le score doit être élevé (pour ce joueur). Par exemple, aux échecs, une
telle fonction pourrait tenir compte du nombre de pièces de chaque joueur, du nombre de déplacements
possibles pour chacune de ces pièces, du nombre de cases contrôlées ... La construction d’une telle fonction
demande bien sûr une connaissance fine du jeu et peut constamment être améliorée après des retours
d’expérience. Une telle fonction est appelée heuristique.
Une fois cette heuristique définie, la première méthode qui peut être envisagée est, à chaque coup, d’essayer
de maximiser cette heuristique. Mais cela n’est pas suffisant : il faut aussi s’assurer que l’autre joueur ne
pourra pas, à partir de la position atteinte après cette maximisation, obtenir un score intéressant (pour
lui, c’est à dire un score bas pour le premier joueur). On peut évidemment continuer ce raisonnement
avec un horizon de plusieurs coups.

-4-

Spé MP - Informatique Tronc Commun 2025/2026

3.2 Exemple

Pour expliquer les détails de cet algorithme, on se base sur un exemple. Celui-ci ne découle pas d’un jeu
connu : on part d’une arène.

5 12 -4 -5 7

-3 1 -2 3

...

....8

La première ligne représente les positions de jeu du joueur J1, la seconde celles du joueur J2. Le contenu
de chaque sommet est la valeur de la position (pour J1). On suppose que la partie commence au sommet
en haut à gauche. Les sommets seront repérés si besoin par un couple (numéro de ligne , numéro de
colonne).

Première approche : horizon deux coups

Quel coup doit jouer J1 s’il ne prend en compte que la valeur de sa position d’arrivée ?

Quel coup doit jouer J1 s’il prend en compte le fait que J2 (supposé connaître également l’heuristique)
va chercher à minimiser le score lors de son coup suivant.

Pour représenter la prise en compte des possibilités du jeu à horizon deux coups, on représente dans un
arbre toutes les possibilités du jeu à cet horizon :

On écrit sur les feuilles les valeurs des positions finales. Puis on remonte l’arbre en donnant à chaque
nœud une valeur selon le principe suivant. Si ce nœud est une position de jeux de J1, la valeur prise
est la valeur maximale parmi celles des fils ; si ce nœud est une position de jeux de J2, la valeur prise
est la valeur minimale parmi celles des fils. Ce processus est à l’origine du nom de l’algorithme. Cette
démarche donne également le coup le plus efficace (avec cette heuristique et cet horizon) pour J1.
Remarque : on suppose bien sûr que J1 et J2 jouent à même horizon.

-5-

Spé MP - Informatique Tronc Commun 2025/2026

Stratégie à horizon 4 coups

Dessiner l’arbre représentant les possibilités du jeu à horizon 4 coups. Donner une valeur à chacun de
ces sommets selon le principe expliqué ci-dessus. Identifier le coup optimal pour J1.

3.3 Implémentation

On représente le graphe de façon usuelle par un dictionnaire. Un autre dictionnaire contient les valeurs
de chaque position données par l’heuristique.
On écrit une fonction récursive minMax(pos , nbCoups) qui renvoie le score optimal obtenu à partir de
la position pos en applicant la stratégie de l’algorithme min-max avec une profondeur de nbCoups. Le
principe de la récursivité est le suivant :

• L’appel à la fonction minMax(pos , nbCoups) va s’appuyer sur des appels avec nbCoups-1, les
positions étant celles des fils de pos.

• Il faut faire attention au fait que selon que pos est une position où J1 doit jouer ou bien J2 doit
jouer, on doit choisir le maximum ou le minimum des scores obtenus par ses fils.

Compléter le fichier Ex_minmax_Acompleter qui contient la construction des dictionnaires ainsi qu’une
trame de la fonction minMax.
Écrire ensuite une fonction minMax2, évolution de la précédente, qui renvoie en plus le coup optimal qui
doit être joué.

-6-

