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Problème 1:accéléromètre MEMS 
La miniaturisation , la fiabilité et le faible coût des capteurs à MEMS (Micro-Electro-Mechanicals-
Systems) permettent de les intégrer dans de nombreux dispositifs électroniques embarqués. La plupart des
accéléromètres à MEMS permettent de mesurer les accélérations suivant deux axes.
En aéronautique, les accéléromètres sont utilisés en tant que tels dans les avions soumis à de fortes 
contraintes, avions de chasse ou de voltige, et couplés à des gyromètres ils entrent dans la composition de 
centrales à inertie.

I– Étude mécanique du capteur
On limite l’étude à la modélisation du fonctionnement d’un accéléromètre à un seul axe. Un 
accéléromètre est modélisé par un système masse-ressorts amorti, dont le schéma de principe est 
représenté sur la figure 1. On suppose que les déplacements ne s’effectuent que selon l’axe Ox horizontal.
L’accéléromètre se compose d’une masse mobile m, assimilée à un point matériel C , astreinte à se 
déplacer sans frottements secs selon l’axe horizontal Ox . Le boîtier rigide de l’accéléromètre, de 
longueur L selon l’axe Ox, de centre B se déplace dans le référentiel  terrestre ( R )  supposé galiléen et 
on note a⃗=a e⃗ x  son accélération dans ce référentiel. 

On note à un instant t quelconque, xC  la position de la masse mobile en mouvement, x B  la position 
du centre du boîtier et X =xC−xB  la position de la masse mobile par rapport au centre du boîtier. 
Lorsque le boîtier de l’accéléromètre est au repos ou animé d’un mouvement rectiligne uniforme, la 
position de la masse mobile par rapport au centre du boîtier vérifie X = 0 et la longueur des ressorts est 
égale à leur longueur à vide l 0 .  Lorsque le boîtier subit une accélération, la masse mobile quitte la 
position définie précédemment.

L'étude mécanique sera faite dans le référentiel ( Rb ) lié au boîtier de l'accéléromètre . 

La masse mobile est soumise  à des forces de frottement visqueux dont la résultante est proportionnelle à 
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la vitesse relative de la masse mobile par rapport au boîtier F⃗ f =−2 f
dX
dt

e⃗ x  où f >0 est le 

coefficient de frottement visqueux ;

1- Mise en équation
a- Faire l'inventaire des forces s'exerçant sur la masse mobile dans le référentiel ( Rb ) lié au boîtier .   
Montrer que la résultante des forces de rappel exercées par les deux ressorts s’écrit T⃗=−2 k X e⃗ x  .
b- Montrer que, lorsque le boîtier subit une accélération, l’équation différentielle vérifiée par l’élongation

X s’écrit : 
d²X
dt²

+
ω0

Q
dX
dt

+ ω0 ² X = −a avec ω0 et Q deux constantes que l’on exprimera

en fonction de k , m et f .
c- Quelle est la signification physique de ω0 et Q ? Quelles sont les dimensions et les unités de ces 
deux grandeurs ?

2-  Étude de la réponse harmonique
On recherche maintenant les conditions pour lesquelles l’élongation X est directement proportionnelle 
à l’accélération a du boîtier. Pour cela, on étudie la réponse du capteur en régime harmonique établi.

a- La grandeur d’entrée du capteur étant l’accélération a ( )=am cos (ω t)  ,  sous quelle forme 
mathématique doit-on rechercher la grandeur de sortie X ( t) ?
b- Établir la relation entre l’amplitude complexe de l’élongation X m et celle de l’accélération am .

La fréquence typique de résonance mécanique du capteur d’un accéléromètre à MEMS est de l’ordre de 
5,5 kHz et son facteur de qualité est voisin de 5.

c- Déterminer l’expression de la fréquence f r à laquelle se produit un phénomène de résonance. 
Commenter.

d- Après avoir étudié le comportement asymptotique de
X m ω0 ²

am

 , montrer qu’il existe un domaine de 

fréquences, que l’on précisera, pour lequel on peut considérer que l’élongation X est directement 

proportionnelle à l’accélération a  du boîtier et vérifie X ( t)=
−m
2 k

a (t) . 

Pour la suite du problème, on considère que le domaine de fréquences dans lequel le capteur de 
l’accéléromètre est utilisé est tel que la relation précédente soit vérifiée.

e- Déterminer la valeur numérique de l’amplitude finale du déplacement de la masse mobile pour une 
accélération constante de « 1g » (  = g), correspondant à l’accélération de la pesanteur à la surface de la ��
Terre.
Commenter le résultat.

II- Étude de la détection par une méthode électrostatique

On s’intéresse dans cette partie au système de détection du déplacement X  de la masse mobile de 
l’accéléromètre pour cela on utilise un condensateur à écartement variable dont les électrodes successives 
sont liées alternativement à la masse mobile et au boîtier.

1- Condensateur unique
Une première méthode, dont le principe est représenté sur la figure 2, consiste à mesurer la capacité d’un 
condensateur dont une électrode, liée à la masse mobile, fait face à une électrode fixe liée au boîtier de 
l’accéléromètre. Le déplacement de la masse mobile modifie la distance entre les deux électrodes et par 
voie de conséquence la capacité du condensateur.



On applique une différence de potentiel U entre les deux électrodes, l’électrode fixe étant portée au 
potentiel V a et l’électrode mobile étant reliée à la masse. Les deux électrodes sont assimilées à deux 
plans infinis parallèles séparés d’une distance e+X . Les charges qui apparaissent sur chacune des
électrodes se répartissent uniformément en surface. On note +σ la charge surfacique portée par 
l’électrode fixe liée au boîtier.

Détermination du champ électrostatique créé par l’électrode fixe

a- En utilisant les propriétés de symétrie et d’invariance de la distribution de charges, préciser, en les 
justifiant, la direction du champ électrostatique créé par l’électrode fixe E⃗1(M ) et les variables dont il 
dépend.
b- Comparer les champs E⃗1(M ) et E⃗1(M ' )  créés par l’électrode fixe en deux points M et M '  
symétriques par rapport à l’électrode fixe.
c-Déterminer l’expression du champ électrostatique E⃗1(M )  crée par l’électrode fixe en tout point de 
l’espace.

Détermination de la relation entre C et X .
d- Déterminer l’expression du champ électrostatique E⃗ (M )  qui règne dans le condensateur puis celle 
de la différence de potentiel U entre les deux électrodes en fonction de Q ,e , X , S  et ϵ0 , Q
représente la charge portée par l’électrode fixe de surface S .

e- Montrer que la capacité  du condensateur s’écrit�� C=C0
e

e+X
où C0 est la capacité du 

condensateur pour X =0 .

Imperfection du dispositif
f- Montrer que la force électrostatique F⃗  qu’exerce l’électrode fixe sur l’électrode mobile s’écrit :

F⃗=−
1
2

C 0 U²
e

(e+X ) ²
e⃗ x

Les caractéristiques typiques d’un accéléromètre à MEMS sont C0=1 pF ,e=1µm ,V a=1V , et la 
masse mobile est de 1 μg.
g- Pour X =0 , donner l’ordre de grandeur de la force électrostatique s’exerçant sur l’électrode liée à la 
masse mobile.
h- Discuter la faisabilité de réaliser une mesure capacitive du déplacement de la masse mobile d’un 
accéléromètre à MEMS prévu pour mesurer des accélérations de « 1  » (  = ).�� �� ��

2- Condensateur double différentiel
Dans les accéléromètres à MEMS, la méthode de mesure consiste à déterminer le potentiel électrostatique

V de l’électrode liée à la masse mobile. Le schéma de principe de la méthode de mesure est représenté 

Figure 2 



figure 3. Une seconde électrode fixe, liée au boîtier, est placée symétriquement par rapport à X =0 . La 
première électrode fixe est portée au potentiel V a  , la seconde au potentiel −V a . L’électrode mobile,
qui reste isolée et globalement neutre, sert alors de sonde de mesure du potentiel V qui est fonction du 
déplacement X de l’électrode mobile entre les deux électrodes fixes liées au boîtier.

Dans cette configuration, le potentiel V de l’électrode mobile s’écrit V=−V a
X
e

 .

a- En utilisant l’expression établie en II- 1-f-, calculer la résultante des forces électrostatiques s’exerçant 
sur l’électrode mobile.
b- Conclure sur les avantages de cette méthode de mesure.

Problème 2:
Partie A : pendule simple 

On désigne par R' ( O ' x' y' z' ) un référentiel d'origine O' dont les axes sont parallèles aux axes du 
référentiel R ( O x y z ) que l'on supposera galiléen . 
Un pendule simple est constitué d'un point matériel P de masse m, suspendu à l'origine O' de R' par un fil 
sans masse et de longueur l . On note θ l'angle que fait le fil, que l'on supposera constamment tendu,
avec la verticale O' y'  . 

Figure 3



Le point O' est animé d'un mouvement de translation uniformément accéléré d'accélération a⃗=a e⃗ x

avec a>0 .
On travaille dans le référentiel R' .
1- Faire l'inventaire des forces s'exerçant sur le point P dans le référentiel R' .
2- Déterminer l'équation différentielle vérifiée par l'angle θ à partir de la deuxième loi de Newton 
écrite dans R' .
3- Retrouver l'équation précédente en utilisant le théorème du moment cinétique appliqué en O' dans R' . 
4- Déterminer l'expression de la valeur θe de l'angle θ correspondant à la position d'équilibre du 
pendule dans le référentiel R ' .
5- Déterminer l'expression de la période T des petits mouvements autour de la position d'équilibre θe en
fonction de l , a et g . 

Partie B : anneau sur une tige en rotation .

On considère un petit anneau M de masse m, considéré comme ponctuel, soumis à la pesanteur et 
susceptible de se déplacer sans frottements le long d’une tige OA, de longueur l , effectuant des 
mouvements de rotation caractérisés par une vitesse angulaire ω constante autour d’un axe fixe vertical
(Δ)  passant par son extrémité O.

Le référentiel lié au laboratoire sera considéré comme galiléen.

L’espace est rapporté au repère cartésien (O , e⃗x , e⃗ y , e⃗ z)   lié au laboratoire . 
On pourra lors des calculs vectoriels utiliser les vecteurs unitaires e⃗r , e⃗θ et e⃗T définis de la manière 
suivante :
→ e⃗r  : vecteur unitaire du plan ( Oxy ) dirigé suivant la projection de la tige su le plan ( Oxy ) .
→ e⃗θ  : vecteur unitaire du plan ( Oxy ) , perpendiculaire au vecteur e⃗r et tel que le repère
(O ;e⃗r , e⃗θ , e⃗ z) soit un repère direct .

→ e⃗T  : vecteur unitaire de la tige et orienté de O vers A 

La tige OA fait  un angle α constant (0<α<π
2

rad )  avec l’axe (Δ) . La tige tourne autour de

(Δ) avec la vitesse angulaire constante ω .

On repère la position de l’anneau sur la tige par la distance r entre le point O et l’anneau M ( r = OM ).
L’anneau est libéré sans vitesse initiale par rapport à la tige à une distance r 0  du point O (r 0<l) . 

L’étude est menée dans le référentiel (R ')=(O ; e⃗r , e⃗θ , e⃗z) lié à la tige.



1- L’anneau est soumis à son poids, aux forces d’inertie et à la réaction de la tige.
Faire un schéma sur lequel apparaissent ces forces.
Ecrire l'expression des forces d’inertie en fonction d'une partie des données, de r(t) et de sa dérivée 
temporelle et des vecteurs unitaires définis précédemment.

2- En appliquant le principe fondamental de la dynamique dans le référentiel ( R') , établir l’équation 
différentielle vérifiée par r ( t ) .

3- Intégrer l'équation différentielle du mouvement en prenant en compte les conditions initiales définies
précédemment et déterminer la solution r(t) en fonction de r 0, g ,ω , t et α  .

4- Déterminer la position d’équilibre r eq de l’anneau sur la tige. Exprimer r eq en fonction de
g ,ω et α .

Montrer qu’il ne peut exister une position d’équilibre de l’anneau sur la tige OA que si la vitesse
angulaire ω  est supérieure à une valeur seuil ω0 que l’on déterminera. Exprimer ω0  en fonction de
α , g et l . 

5- On se place dans le cas où ω>ω0 l’anneau étant dans sa position d’équilibre. On écarte légèrement
l’anneau de cette position d’équilibre.
Déterminer, en la justifiant, l’orientation de la résultante des forces appliquées à l’anneau ? En déduire si 
l’équilibre est stable ou instable. 

6- Déterminer l'énergie potentielle de pesanteur ainsi que l'énergie potentielle dont dérive la force d'inertie
d'entraînement .  Retrouver les réponses des questions 4 et 5 à l'aide d'une étude énergétique . 

Problème 3     : Chute d'un arbre mort .

Les vecteurs unitaires sont notés avec des chapeaux .

Un bûcheron assimilé à un point matériel B de masse m souhaite abattre un arbre mort assimilé à un cylindre 
homogène de masse M avec M > m, de hauteur H et de section carrée de côté 2a représenté sur la figure (a ) ci-
dessous . 

Il tire pour cela sur un câble fixé en C à l'arbre, de longueur BC=l et de masse négligeable, afin de faire 
tourner l'arbre autour de l'axe ( O, ûy ) dirigé par le vecteur  ûy = ûz Λ ûx .

L'arbre étant mort, on néglige l'action de ses racines, de telle sorte qu'au moment où l'arbre commence à tourner, les
actions de contact qu'il subit se limitent à une force R⃗1=T 1 ûx+N 1ûz  appliquée au point O et satisfaisant aux 
lois de Coulomb avec un coefficient de frottement f . De même les actions du sol sur le bûcheron sont décrites par 
une force R⃗2=T 2 ûx+N 2 û z appliquée au point B et satisfaisant aux lois de Coulomb avec le même coefficient 
de frottement f . Les composantes T 1, N 1, T 2 et N 2 ont des  valeurs algébriques . Le câble est supposé tendu .

 On note F⃗ la force exercée par le câble sur l'arbre au point C, supposée parallèle au câble et F sa norme .

b



Les angles sont orientés positivement dans le sens trigonométrique autour de ( O, ûy ) et on note α l'angle ( positif ) 
entre B⃗O et B⃗C .

1- Le bûcheron est supposé ne pas glisser dans la situation initiale décrite par la figure (a). Exprimer N 2 et T 2

en fonction de F, α, m et g. En déduire l’expression de la valeur maximale Fmax de F en fonction de f, m, g et α . ( on
considérera que mg > F sinα ) .
2- L’arbre est supposé au repos dans la situation initiale décrite par la figure (a). Exprimer N 1 et T 1 en fonction 
de F, α, M et g. En déduire que pour 0≤ F ≤ Fmax le glissement n’est pas possible en O .
3- Exprimer le moment Γg du poids de l’arbre par rapport à l’axe (O, ûy ) dans la situation initiale  décrite par la 
figure (a).
4- Soit ΓB le moment par rapport à l’axe (O, ûy) exercé par le bûcheron sur l’arbre via le câble. Quelle est la valeur 
minimale de ΓB permettant à l’arbre de pivoter autour de l’axe (O, ûy )?
5- En supposant F constant, justifier qu’il existe une valeur optimale αm de l’angle α pour laquelle ΓB est 
maximal  .On suppose que, quelque soit l’angle α, l’action du bûcheron est telle que l’on est à la limite du 
glissement : F prend la valeur Fmax  .

6- Montrer que le moment ΓB par rapport à l’axe (O, ûy ) exercé par le bûcheron via le câble s’  ́écrit ΓB=
mgl

Φ(α)

avec Φ(α)=
1

f sinα
+

1
cos α

 .En déduire l’expression de αm  en fonction de f.

Vérifier que αm=
π
4

pour f=1 .

7- On donne M =103 kg , H =20 m ,a=0,5 m , m=102 kg , g=10 m.s−2 et f =1 . Calculer la force Fmax  et la 
longueur l de corde nécessaires pour initier la rotation de l’arbre. Commenter.

On suppose que l’arbre a commencé  sa rotation autour de l’axe(O, ûy ), repérée par l’angle θ que fait O⃗C avec
 ( O , ûz ).( figure (b ) ) 

8- Après avoir fait une figure représentant la situation et faisant apparaître les différents paramètres, exprimer 
l’énergie potentielle de pesanteur Ep de l’arbre en fonction de M, g, H, a et θ. Le bûcheron opère de manière quasi-
statique c’est-à-dire sans communiquer d’ énergie cinétique à l’arbre. A partir de quel angle θ peut-il lâcher le 
câble?


