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CHIMIE     :

Exercice 1     :rosée du matin
Chacun de nous a déjà pu observer par un matin d’automne un peu frais, ces gouttelettes d’eau de 
condensation sur une toile d’araignée .

1- Esquisser le diagramme de phase de l’eau dans le plan  (pression en fonction de la température) en y 
faisant apparaître :
→ Les domaines des différentes phases séparés par les courbes d’équilibre
→ Le point triple 
→ Le point critique
→ Le point d’équilibre liquide-vapeur à la pression de 1 bar avec les valeurs numériques 

2- Rappeler l’expression du potentiel chimique pour :
→ un gaz parfait  à la température T et à la pression P , µG(T , P)
→ une phase condensée pure (pcp) à la température T et à la pression P , µ L(T , P)
L'état de référence sera l'état standard à T . 

3- Que peut-on dire des potentiels chimiques précédents lorsqu'il y a équilibre liquide vapeur?
En déduire l’expression de la différence des potentiels chimiques standards de l'eau liquide et de l'eau
vapeur à la température T  en fonction de T et de la pression de vapeur saturante à la température T notée

P sat (T ) .

On donne quelques valeurs supplémentaires de P sat (T ) :

T (en °C) 100 80 30 10 0
Psat  (kPa) 100 47 4,3 1,2 0,62

4- On dispose d’un mélange eau-liquide/eau-vapeur à  = 10 °C et à la pression  P = 3,6 kPa. Ce mélange 
peut-il être en équilibre ? ( justifier ) 
Prévoir l’évolution du système. 
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La constante des gaz parfaits a pour valeur numérique R=8,31 J.mol−1 .K−1

5- Expliquer maintenant, pourquoi des gouttes de rosée peuvent se déposer, durant la nuit, sur les toiles 
d’araignée. Représenter, directement sur votre diagramme de la question 1- , la trajectoire de ce 
processus.

Exercice 2     : cinétique 

I- Elimination de l'acide lactique dans le sang .

Après un effort intense, la concentration d’acide lactique C3H6O3 (noté HLa) dans le sang, qui a beaucoup
augmenté pendant l’effort, diminue progressivement pendant la phase de récupération.
Lors d’une récupération dite « active », quand le sportif poursuit un effort modéré, la diminution est plus 
rapide.

Dans certaines conditions, on a pu obtenir ce tableau de concentrations en acide lactique au cours du 
temps :

t ( en min ) 0 8 16

[ Hla ] en mmol.L-1 3 1,1 0,4

On veut déterminer l’ordre de la réaction de dégradation de l’acide lactique :
 HLa → Produits

1-  En supposant que la réaction est d’ordre 1, déterminer l’expression de l’évolution de [HLa] en 
fonction du temps. En utilisant les valeurs à t = 0 et t = 8,0 min du tableau ci-dessus, déterminer la 
concentration [HLa] à t = 16,0 min, dans le cas où la réaction est d’ordre 1.
Les mesures sont-elles compatibles avec une réaction d’ordre 1 ?

Dans d’autres conditions, l’évolution de la concentration d’acide lactique HLa suit une loi différente qui 
n’admet pas d’ordre.
On considère que la concentration (notée C) d’acide lactique vérifie l’équation différentielle suivante :

dC
dt
=−αC (t)−βC ²(t)+γ Les coefficients α ,β et γ , dépendent de l’activité physique pendant la 

phase de récupération et sont supposés connus et enregistrés dans le script.
On veut résoudre numériquement cette équation différentielle en utilisant la méthode d’Euler explicite.

On utilisera les variables C0 (concentration initiale), alpha ( ), beta ( ) et gamma(   γ ) qu’on supposera 
précédemment définies

2- On découpe l’intervalle de temps de durée Dt, sur lequel on veut résoudre l’équation, en N intervalles 
de longueur p. 
Écrire le script Python permettant de définir p connaissant Dt et N, puis la liste de type list  L_t contenant 
la première date où les concentrations seront calculées ainsi que la liste L_c contenant le premier élément 
de la liste des concentrations à calculer .

3- Si on note C i la concentration d’acide lactique à l’instant de date ti, déterminer l’expression de C i+1 en 
fonction de C i , p = ti+1 – ti , et des coefficients α ,β et γ .

4-  Écrire un script Python utilisant la méthode d’Euler explicite et permettant de remplir la liste L_c dont 
les éléments sont les concentrations C i  aux différentes dates des éléments de la liste L_t que l'on remplira 
également . 



II- Décomposition des ions hypochlorite 

Le traitement de l’eau des piscines peut être fait grâce aux ions hypochlorite ClO- 
(aq)  .

Comme avec le traitement à l’oxygène actif, le principe actif n’est pas rémanent car ClO – peut se 
décomposer d’après la réaction d’équation :      ClO-

(aq) = Cl- 
(aq) +  ½  O2 (g). 

Il faut sans cesse surveiller le taux de ClO-  
(aq) et l’ajuster si nécessaire en utilisant, par exemple, des 

solutions d’eau de Javel.
La décomposition de l’ion hypochlorite est lente, de sorte que la concentration de l’ion hypochlorite
dans les solutions commerciales d’eau de Javel diminue lentement au cours du temps.
La courbe de la figure ci-dessous représente l’évolution de la concentration en ion hypochlorite [ClO-] 
pour une solution de concentration initiale [ClO -] 0 = 2,0 mol·L-1 maintenue à la température 1 = 30 °C.
L’unité utilisée pour l’axe des abscisses est la semaine.

1- Donner l’expression de la vitesse v de la réaction de décomposition de l’ion hypochlorite.

2- En expliquant votre démarche, calculer à l’aide du graphique (en moles par litre par semaine) la valeur 
de cette vitesse juste après la date t = 0 en gardant l'unité de temps en semaine.

3- Préciser la relation entre la vitesse v et la concentration en ion hypochlorite dans le cas d’une réaction 
d’ordre 2.

4- En indiquant clairement votre démarche ( grandeurs calculées, courbes représentées … ), montrer que 
la courbe précédente est  en accord avec l’hypothèse d’une réaction de décomposition de l’ion 
hypochlorite d’ordre 2 . Déterminer la constante de vitesse k de la réaction ( on gardera l'unité de temps 
en semaine ) .

5- Rappeler la loi d'Arrhénius .  Formuler un conseil à donner aux utilisateurs quant aux conditions de 
stockage des solutions de traitement de l’eau, telles que celles à l’oxygène actif ou aux ions hypochlorite 
afin d’allonger leur durée de conservation.



PHYSIQUE     : étude optique de l'oeil 
L’œil est l’organe de la vision. Il capte la lumière et transforme celle-ci en signaux électriques transmis au
cerveau via le nerf optique. La cornée est la membrane transparente par laquelle la lumière entre dans 
l’œil. Ce dernier est de forme approximativement sphérique avec un diamètre typique d’environ 25 mm. 
Il est maintenu dans la cavité orbitaire par un ensemble de muscles qui assure aussi son mouvement. La 
figure 1 donne une représentation simplifiée de l’œil.
La forme de la cornée permet la focalisation de la lumière sur la rétine, partie interne photosensible de 
l’œil. La mise au point s’effectue à l’aide du cristallin qui a la forme d’une lentille biconvexe. Sous
l’action des muscles ciliaires, la courbure du cristallin est modifiée, si besoin, de façon à pouvoir former 
une image nette sur la rétine. Ce processus est appelé accommodation.

1- La constitution de l’œil présente des analogies avec celle d’un appareil photographique. Regrouper 
dans un tableau trois éléments de l’œil et de l’appareil photographique pouvant être mis en 
correspondance.

2-  En assimilant l’œil emmétrope (c’est-à-dire l’œil sans défaut) au repos à un ensemble {lentille
mince - écran} distants de 17 mm, donner la valeur correspondante de la vergence de l’œil.

3-  Comment la forme du cristallin est-elle modifiée lors de l’accommodation ? Comment appelle- t-on le 
point le plus proche que l’œil peut voir en accommodant ? Ce point est typiquement situé à 25 cm devant 
l’œil emmétrope. Trouver la valeur de la vergence de l’œil dans ce cas de figure.

La myopie est un défaut de la vision caractérisé par une perception floue d’objets éloignés. L’image
de ces derniers se forme en avant de la rétine lorsque l’œil est au repos.

4-  Un œil myope possède un punctum remotum situé à 2,0 m. Quelle est la vergence de la lentille
correctrice à utiliser ( on considère la correction faite par un verre de lunette situé à environ 1 cm de 
l'oeil ) ? Faire un schéma ( sans respecter les échelles ) montrant la marche de rayons lumineux incidents 
sur l’ensemble {lentille correctrice - œil}. On représentera l’œil par un ensemble {lentille mince -
écran}.

Les cônes sont les cellules photoréceptrices permettant la perception de la couleur. Ils sont concentrés
dans la zone centrale de la rétine avec une densité typique de σ = 2,0 ·105 cellules / mm². On modélise
toujours l’œil par un ensemble {lentille mince - écran} distants de 17 mm. Le pouvoir séparateur de
l’œil est caractérisé par l’angle qui doit séparer deux points à l’infini pour qu’ils soient distingués.

5-  Donner une estimation, en radians, du pouvoir séparateur de l’œil en supposant que celui-ci est lié à la 
distance entre deux cônes voisins.



PHYSIQUE DIFFUSION THERMIQUE  ( Niv1 )     type CCINP - E3A :
Problème 1:isolation thermique 
I- Étude d’une paroi plane
On considère une paroi plane (figure 1) d’épaisseur e0 et de surface S 0  . On néglige les effets de
bord selon y et z. La température ne dépend que de x. La température sur la première face, située en

x=0 est T 1 , celle de la seconde face, située en x=e0 est T 2 .
On note cla capacité thermique massique du matériau constitutif de la paroi, ρ sa masse volumique
et λ sa conductivité thermique.

Q1- Rappeler la loi de Fourier. Préciser les notations et les unités des grandeurs physiques qui
interviennent.
Q2- On suppose qu’il n’y a pas de source de chaleur interne. Établir pour l’étude de cette paroi,
l’équation de la diffusion thermique en coordonnées cartésiennes.
Q3- Déterminer en régime stationnaire le profil de température T (x ) de cette paroi en fonction de

x , e0 ,T 1 et de T 2 .
Q4- Donner en régime stationnaire l’expression du flux thermique Φ traversant cette paroi orientée
dans le sens des x>0 , en fonction de e0 , S0 ,λ ,T 1 et de T 2 . En déduire l’expression de la
résistance thermique Rth de cette paroi, en fonction de e0,λ et de S 0 .

II-  - Étude d’une fenêtre double vitrage
Une fenêtre double vitrage (figure 2) de surface S f est constituée de deux parois vitrées de même
épaisseur e séparées d’une couche d’argon statique également d’épaisseur e . En plus des
phénomènes de diffusion thermique dans le verre et dans l’argon, il faut tenir compte d’échanges
conducto-convectifs au niveau des interfaces air extérieur - verre et verre - air intérieur. Ces
échanges sont décrits par la loi de Newton, on note h est le coefficient d’échange ( ou coefficient 
conducto-convectif ) . 



Soient T ext et T inté respectivement les températures de l’air extérieur et de l’air intérieur de la pièce
d’habitation équipée de cette fenêtre. Le coefficient d’échange conducto-convectif à l’interface air
extérieur – verre est noté he , celui à l’interface verre – air intérieur est noté he . Les conductivités
thermiques du verre et de l’argon sont notées respectivement λv et λ AR , avec λ Ar≪λv .
Soient T Sext et T Sint respectivement les températures en surface des verres aux interfaces air
extérieur – verre et verre – air intérieur.
Les parois vitrées occupent les zones 0≤x≤e et 2e≤x≤3e .
L’argon occupe la zone e≤x≤2e .

Q5- Proposer, en régime stationnaire, un schéma électrique équivalent qui décrit les transferts thermiques 
associés à cette fenêtre. Précisez les expressions littérales des résistances thermiques qui interviennent en 
fonction des données de l’énoncé. Vous ferez apparaître sur votre schéma les différentes températures

T Sext ,T ext ,T inté et T Sint .
Q6- On repère les différentes interfaces par leurs abscisses x . L’interface air extérieur - verre se
situe en x=0 . On suppose T ext<T inté . Précisez, en justifiant qualitativement, parmi les profils de 
température proposés sur la figure 3 celui qui correspond à cette fenêtre.

III - Étude d’une pièce d’habitation
On considère dans cette sous-partie une pièce d’habitation de température supposée uniforme.
L'étude de la pièce est limitée à un mur comportant une fenêtre et à un plafond de surface S p=10m²  .
Ils sont tous les trois en contact avec le milieu extérieur de température constante T ext=274 K .
Les pertes thermiques par le sol et les cloisons intérieures sont négligées. On note R1 la résistance
thermique de la pièce, c’est-à-dire de l’ensemble {mur, fenêtre, plafond}. R1 tient compte de la
totalité des phénomènes convectifs et diffusifs.
On chauffe la pièce, initialement à la température T ext , avec un radiateur de puissance P = 500 W.
La température finale atteinte se stabilise à T fint=294 K .
Q7- Donner la valeur numérique de R1 , résistance thermique de la pièce d’habitation.
Q8-  On note T (t)  la température de la pièce supposée uniforme à un instant t et C la capacité
thermique de la pièce. Cette capacité englobe celle du mobilier, celle de l’air contenu dans la pièce et 
celle des portions de murs intérieurs, aussi appelés doublages, qui se situent avant l’isolant. Etablir dans 
l’approximation des régimes quasi-stationnaires, l’équation différentielle vérifiée par la température



T (t ) . En déduire l’expression de la température T (t) en fonction de T ext ,T fin , R1 et de C .
Q9- Le plafond a une épaisseur eP=5cm et une conductivité thermique λP=0,1 SI . Donner la valeur
numérique de la résistance thermique du plafond notée R pl . Exprimer littéralement la résistance 
thermique de l’ensemble mur-fenêtre, notée Rmf , en fonction de R1 et de R pl .
Donner la valeur numérique de Rmf . Les déperditions thermiques sont-elles plus importantes par le 
plafond ou par l’ensemble mur-fenêtre ( justifier ) ?
Q10- On ajoute alors au plafond une couche d’isolant thermique d’épaisseur e iso et de conductivité
thermique λ iso .
Exprimer littéralement la nouvelle résistance thermique de l’ensemble plafond-isolant,notée R ' pl , en 
fonction de R pl , e iso ,λiso et de S P .

Soit R2 la nouvelle résistance thermique totale de la pièce. On admettra que R2=0,12 K.W−1 .
D’après ce modèle, par quel coefficient a-t-on divisé les pertes d’énergie thermique de la pièce en 
ajoutant cette couche d’isolant au plafond ?

Problème 2     :homéothermie des phoques 
Les cétacés sont les seuls mammifères à vivre exclusivement dans la mer. Devoir respirer avec des 
poumons et maintenir leur température interne constante a nécessité une adaptation qui en fait des 
animaux exceptionnels. L’étude scientifique de ces espèces, dont certaines sont en voie de disparition, est 
menée par de nombreuses équipes de recherche en collaboration avec les associations de défense des 
espèces animales. 

On se place en coordonnées cylindriques (figure 1) pour étudier une situation physique stationnaire, 
unidimensionnelle à symétrie cylindrique, telle que la température en un point M (r ,θ , z)  ne dépend 
que de r .

Le gradient de la température T (r ) est égal à ⃗grad (T )=
dT
dr

e⃗r .

On note j⃗ d (M )= j d (r ) e⃗r le vecteur densité de courant thermique au point M .



On considère un cylindre conducteur thermique creux de longueur L, occupant l’espace r1<r<r 2  
constitué d’un matériau de conductivité λ (figure 2) dans lequel il n’y a aucune source thermique dans 
le matériau. 

1- En effectuant un bilan énergétique  pour le volume de matériau compris entre les cylindres de rayons

r et r+dr  montrer que 
d (r jd (r ))

dr
=0 .

2-  En déduire la loi T (r ) en notant T 1 et T 2 les températures des cylindres de rayons r1  et r 2

3- Exprimer la puissance thermique ϕ qui traverse le cylindre de rayon r et de longueur L, dans le 
sens des r croissants. 

4- Définir et donner l'expression de  la résistance thermique du cylindre .

5- Prenons l’exemple d’un phoque marin de taille moyenne de masse M = 150 kg, vivant dans un océan à 
la température θ0=0 °C . On le modélise (figure 3) par un cylindre de longueur L = 1,6 m, de rayon
 r = 25 cm, qui ne perd de l’énergie que par sa surface latérale, considérée comme " partiellement isolée " 
de l’eau froide par une épaisseur e = 50 mm de graisse de coefficient caractéristique λ = 7,0∙10−2 SI. Sa 
température d’existence est égale à θeq=36,5 °C supposée uniforme. Il pêche 4,0 kg de poisson pour sa 
consommation journalière. Cette nourriture lui fournit une énergie de 4 600 kJ par kg de poisson 
consommé. 
Évaluer l’énergie thermique perdue par le phoque en une journée et la comparer à l’énergie apportée par 
sa nourriture. 

6- Un bébé phoque a toutes ses dimensions divisées par 2,5 par rapport au phoque adulte, y compris 
l’épaisseur e’ de graisse. Justifier pourquoi sa masse vaut m = 9,6 kg. 
Ses besoins métaboliques ( hors compensation des pertes thermiques )  nécessitent une consommation de 
5,0∙10−1 kg de poisson par jour.
Son corps est entouré d’un duvet d’épaisseur e’’ = 10 mm et de coefficient λ’’ = 1,0∙10−2 SI. Évaluer la 
consommation de poisson journalière nécessaire à ce bébé phoque. Combien aurait-il dû consommer en 
plus par jour s’il n’avait pas eu de duvet protecteur ? 



PHYSIQUE DIFFUSION THERMIQUE  ( Niv2 )     type Centrale – Mines  :
L’anémométrie à fil chaud

L’anémométrie à fil chaud est une technique permettant de mesurer la vitesse d’écoulement d’un fluide. 
Elle est basée sur l’influence de la vitesse d’écoulement du fluide sur le transfert thermique conducto-
convectif d’un solide conducteur plongé dans ce fluide.
Le système le plus couramment utilisé est un petit fil cylindrique, d’un diamètre typique dw de l’ordre de 
quelques micromètres, parcouru par un courant et donc chauffé par effet Joule.
Ce petit fil est fixé à des broches d’alimentation par l’intermédiaire d’une gaine d’adaptation qui permet 
notamment l’alimentation du fil et de fixer la longueur active du fil, notée Lw qui est ici de l’ordre de 
quelques millimètres.

                       
Quelques valeurs numériques concernant certaines caractéristiques physiques du fil chaud sont 
rassemblées dans le tableau ci-dessous .

Les applications numériques seront réalisées avec au plus 2 chiffres significatifs.

I- Étude énergétique de l’anémomètre

I.A Bilan d’énergie dans le fil chaud
Le fil conducteur (en tungstène par exemple) est parcouru par un courant électrique continud’intensité I. 
Il est plongé dans un fluide en écoulement. On utilisera les notations suivantes :
→  Caractéristiques du fil (que l’on repère avec l’indice « w » pour wire en anglais) : masse volumique μw

, capacité thermique massique cw , température Tw , résistivité (inverse de la conductivité) électrique
ρw  , conductivité thermique λw  , longueur Lw et diamètre d w .

→ Caractéristiques du fluide (généralement de l’air que l’on repère lorsqu’il a ambiguïté avec l’indice « f 
» pour fluide) et de l’écoulement : masse volumique μf , viscosité η , température Tf  , pression p f, 
vitesse de l’écoulement V⃗  . Ces caractéristiques sont supposées constantes pendant la mesure.
Si l’on note h le coefficient de transfert thermique conducto-convectif, la puissance thermique surfacique 
cédée par le fil au fluide à travers la surface S est donnée par la loi de Newton :



                 
δQ̇ f

dS
=h(T w−T f )    (1)

On notera (Ox) l’axe du fil, ses extrémités étant situées en x=
−Lw

2
et x=

+Lw

2
1- Rappeler la loi d’Ohm locale. Définir les grandeurs intervenant dans cette loi et donner leurs unités 
usuelles. Établir l’expression de la résistance électrique totale, notée Rw , du fil en fonction de
ρw , Lwet d w  .

En déduire la puissance Pj dissipée par effet Joule dans le fil en fonction de ρw , Lw et d w  et I, puis la 

puissance volumique dissipée par effet Joule : P v=
dP j

d τ
.

2- Rappeler la loi de Fourier de la conduction thermique. Définir les grandeurs intervenant dans cette loi. 
On dit souvent qu’il s’agit d’une loi phénoménologique. Que cela signifie-t-il ? La température est 
supposée homogène sur chaque section du fil d’abscisse x. Que peut-on en déduire ?
Établir l’équation de diffusion thermique dans le cas d’un fil à la température T(x,t) où seuls les transferts 
thermiques par conduction ont lieu.

On suppose la vitesse V⃗  de l’écoulement uniforme et indépendant du temps. En plus des transferts 
thermiques par conduction, on prend en compte les transferts thermiques par conducto-convection et ceux
provenant de l’effet Joule. 

3- Dans la loi de Newton (1), la grandeur h dépend de la vitesse V⃗  de l’écoulement. Quelle est son 
unité ? Expliquer qualitativement comment varie h en fonction de V=∥V⃗∥ . Expliquer alors comment 
évolue Tw quand V augmente.
4- En effectuant un bilan énergétique sur un élément de volume de fil compris entre les abscisses x et 
x+dx, établir l’équation aux dérivées partielles vérifiée par la température Tw (x,t).
Que devient cette équation en régime permanent ?

On se place en régime permanent dans tout le reste de la partie I .

La résistivité du fil dépend en fait de la température Tw de ce dernier. Expérimentalement, on mesure que 
si le fil est en contact avec un fluide à la température Tf , sa résistivité ρw vérifie la relation :
                   ρw (x )=ρ f [1+α(T w(x)−T f )]       (2)

où ρ f  est sa résistivité à la température du fluide et α=10−3 K−1 est un coefficient expérimental
supposé constant. On note enfin T 1(x )=T w( x)−T f .

5- Mettre l’équation obtenue à la question 4 sous la forme :
d² T 1(x)

dx²
+K1T 1( x)+K2=0     (3)

Exprimer les constantes K 1  et K 2 en fonction de l’intensité I et des caractéristiques du fil, du fluide 

et de l’écoulement. On montrera, en particulier, que αK 2=K 1+
4 h

(λw d w)
.

Dans la plupart des anémomètres à fil chaud, K 1 est négatif. Déterminer la condition correspondante 
sur le coefficient conducto-convectif h. 

On se place dans ce cas dans toute la suite et on pose : l c=
1

√∣K1∣
.

On considère que le contact thermique assuré par les gaines d’adaptation entre les extrémités du fil et les 
broches de l’anémomètre (voir figure 1) se fait sans résistance thermique (contact parfait). Les broches et 
les gaines sont à la température Tf du fluide.

6- Rappeler la définition d’une résistance thermique ainsi que son unité.Quelle est la conséquence d’un 
contact sans résistance thermique ?
Déterminer la solution générale de l’équation différentielle (3).
En tenant compte des conditions aux limites dans le problème et de sa symétrie, montrer que T1(x) 



s’exprime assez simplement à partir de la fonction cosinus hyperbolique. En déduire l’expression du 
profil de température Tw (x) dans le fil de la sonde en fonction de x ,l c , K 2, T f et Lw .
7- Déterminer la puissance thermique Q̇ g  cédée par le fil à l’ensemble des deux gaines d’adaptation
en fonction de l c , K2, Lw ,λw et d w .
8- Montrer que la moyenne spatiale 〈T w 〉  de la température du fil s’écrit selon la relation

〈T w 〉=T f+K 2 l c ² [1−Λ tanh (
Lw

2 l c

)] dans laquelle on précisera l’expression du paramètre Λ . 

La figure 2 représente la distribution de température dans le fil chaud pour différentes valeurs du rapport

k=
Lw

2 l c

. La fonction tracée est f ( y)=
T w−T f

〈T w 〉−T f

avec y=
x

Lw

. 

9- Pour un fil de tungstène de diamètre dw = 5μm, de longueur Lw = 1,2mm et fonctionnant dans un 
régime de température Tw tel que l c=30d w  évaluer, en faisant les approximations pertinentes, la valeur 

numérique du coefficient ξ=
T W ,max−T f

〈T w 〉−T f

où T w ,max est la température maximale atteinte dans le fil. 

En exploitant la figure 2, commenter la valeur trouvée.

I.B Puissance thermique cédée au fluide

10- Commenter les courbes de la figure 2. Quelle approximation peut-on faire quant à la température Tw 
dans le cas d’un fil long (on précisera ce que « long » signifie ici) ?

La résistivité ρw  du fil est toujours supposée dépendre de la température du fluide avec lequel
il est en contact selon la relation (2).

11- Calculer la résistance Rw ,∞ d’un fil supposé long en fonction de sa résistance Rf à la température Tf, 
de α et des températures 〈T w〉 et Tf .

Toujours dans le cadre d’un fil long, on fait l’hypothèse que la puissance thermique Q̇ g cédée par
le fil aux deux gaines d’adaptation est négligeable devant la puissance Q̇ j dissipée par effet Joule



le long du fil ou celle, notée Q̇ f , correspondant aux échanges thermiques conducto-convectifs
reçus par le fluide à l’interface entre le fil et le fluide.
12- Déterminer, en régime permanent, l’expression de Q̇ j en fonction de la différence 〈T w 〉−T f ,h et
des caractéristiques du fil  .
Pour un fluide de viscosité η  et de masse volumique μf , qui s’écoule à la vitesse V autour d’un

obstacle fixe de taille caractéristique dw , on définit le nombre de Reynolds ℜe=
μ f V d w
η . Il compare 

deux modes de transport au sein du fluide.
13- Sachant que la viscosité η  s’exprime en Pa · s déterminer la dimension de ℜe .

On définit par ailleurs le nombre de Nusselt, N u=
hd w

λ f
. 

14- Déterminer la dimension de N u  et proposer une interprétation physique de cette quantité.
Comment varie N u  lorsque la vitesse V du fluide s’écoulant autour du fil augmente ?
On admet que le nombre de Nusselt vérifie la loi de King N u=A+B√ℜe où A et B sont des
constantes connues qui ne dépendent que de la nature du fluide en écoulement.
15- En exploitant l’expression de 〈T w 〉 obtenue à la question 8 et les résultats de la question 5, montrer 

que dans le cas d’un fil long on peut écrire l c=
d w

2
θ
ν avec θ=

1
N u

λw

λ f

Rw ,∞

R f

   (4 )

On précisera la valeur numérique de l’exposant ν .

16- On considère de nouveau un fil de longueur Lw quelconque. Établir l’expression de la puissance 
thermique Q̇ f  associée au transfert conducto-convectif du fil vers le fluide.

On suppose que la relation (4) reste valable en ordre de grandeur pour un fil de longueur quelconque et 
que, de plus, le coefficient θ  qu’elle fait intervenir est de l’ordre de l’unité pour toutes les mesures 
effectuées.

 17- En étudiant le rapport 
Q̇ f

Q̇ g

et sachant que dans le contexte d’étude N u=10 SI , justifier a 

posteriori que l’on puisse simplifier le problème en ne considérant pas les pertes dans les gaines 
d’adaptation sous l’hypothèse d’un fil long.
En utilisant le résultat de la question 12 et en supposant que l’on puisse appliquer la loi de King, montrer 
que, pour un fil long, la mesure de la vitesse V du fluide se ramène à une mesure de résistance. On 
déterminera l’expression de V en fonction notamment de Rw ,∞ , R f et I . 

II Anémométrie à deux fils     :

On étudie à présent une autre technique qui utilise deux fils parallèles séparés par une distance ϵ
comme représenté sur la figure 3 ci-dessous.
Cette technique est plus précise que la précédente car elle permet de faire deux mesures : la première 
n’utilise que le premier fil ; la seconde étudie la réponse induite par le premier dans le second.



→ Le premier fil (l’émetteur, repéré par un indice e), froid initialement (c’est-à-dire à la température
du fluide environnant Tf ), est traversé par une impulsion électrique d’intensité I = 1A et d’une durée τ
de quelques μs, appelée « phase de chauffe », à l’issue de laquelle le fil s’est donc échauffé.
On fait ensuite passer dans l’émetteur un faible courant I0 = 1mA, dont on négligera l’influence 
thermique, et on mesure la tension à ses bornes en fonction du temps. On obtient ainsi l’évolution de la 
résistance électrique Re (t) en fonction du temps et donc celle de sa température Te (t).
→ Un second fil (le récepteur, repéré par un indice r) est placé parallèlement au premier, en aval dans 
l’écoulement du fluide (ici de l’air), à une distance ϵ=0,5 mm du premier. Sous l’action de 
l’écoulement, une traînée d’air chaud (zone échauffée du fluide par l’impulsion thermique de l’émetteur) 
va atteindre le récepteur.
L’acuité et la durée de cette traînée d’air chaud vue par le second fil vont dépendre notamment de la 
norme V de la vitesse de l’air.
Hormis leur température et donc leur résistance, les caractéristiques de ces deux fils sont supposées
identiques à celles du fil utilisé dans la partie I.
On se concentre tout d’abord sur le fil émetteur de l’impulsion thermique afin d’étudier la première 
possibilité de mesure de la vitesse de l’écoulement. On néglige la conduction thermique dans le fil et 
entre le fil et les broches. On suppose donc, conformément à ce qui a été fait précédemment, que la 
température du fil est homogène et ne dépend que du temps, tout comme sa résistance toujours obtenue 
dans le cadre du modèle de résistivité résumé par la relation (2).
Pendant la phase de chauffe, l’impulsion étant très brève, on négligera les pertes d’énergie dues à la 
convection de l’air autour du fil lors de cette phase. L’origine des temps t = 0 correspond au début de 
l’impulsion électrique.
18- Montrer que, pendant la phase de chauffe, la température T e(t) vérifie une équation différentielle

qui peut se mettre sous la forme 
d (T e – Tf )

dt
−

T e−T f
τ1

=
R f I²

C
où l’on exprimera la durée 

caractéristique τ1 de montée en température et le paramètre C en fonction des paramètres du problème. 
Que représente C ?
19- Résoudre cette équation en exprimant finalement Te (t) en fonction de t , T f ,α et τ1 .
En déduire, en fonction de τ , τ1 et α  l’expression de l’amplitude de l’impulsion thermique
ΔT e ,max=T e , max−T f obtenue dans le fil émetteur après qu’il a été parcouru par l’impulsion de courant.

20- Une fois l’impulsion terminée, i. e. pour t>τ , le fil émetteur ne reçoit plus de courant qui le 
chauffe, il se refroidit par convection au contact thermique de l’air en mouvement.
Déterminer la température de l’émetteur Te (t) durant cette phase dite de relaxation en fonction de

t , τ ,T f ,ΔT e , max ainsi que d’une nouvelle durée τ2 caractéristique de cette phase de relaxation 
dépendant notamment de N u .
Sur la figure 4 ci-dessous le graphe de gauche indique l’allure de Te(t) mesurée lors des phases de chauffe 
et de relaxation au contact de deux écoulements de vitesse différente.
Sur cette même figure 4, le graphe de droite montre de façon plus quantitative en échelle semi-
logarithmique, des relevés expérimentaux de la phase de relaxation pour différentes valeurs de la norme 
de la vitesse de l’écoulement.
21- Pendant la phase de chauffe, on constate sur la partie gauche de la figure 4 que les deux courbes sont 
confondues. Quelle hypothèse émise plus haut ce résultat permet-il de confirmer ?
22- Expliquer qualitativement comment l’analyse des courbes de la figure 4 permet une première mesure 
de la norme de la vitesse de l’écoulement du fluide.



L’air réchauffé par l’émetteur va être transportée par convection jusqu’au second fil, le récepteur.
En alimentant ce dernier par un très faible courant I0 = 1mA, dont on peut toujours négliger l’influence 
thermique, on peut mesurer sa résistance et en déduire sa température.
Certains résultats expérimentaux sont rassemblés dans la figure 5 sur la page suivante .

Sur la partie gauche de la figure 5, on a représenté avec les mêmes échelles de temps et d’amplitude
l’allure typique des pics de températures relevés dans chacun des deux fils.
De façon plus quantitative, on a représenté sur la partie droite de cette même figure, le résultat des 

mesures de l’évolution de la fonction normalisée 
(T r (t)−T f )

ΔT r ,max

pour différentes valeurs de la norme de 

la vitesse de l’écoulement.
23- Commenter les deux courbes de la partie gauche de la figure 5. Proposer des explications qualitatives 
pour les différents phénomènes que l’on peut observer.
24-  Expliquer qualitativement comment l’analyse des courbes de la figure 5 permet une seconde mesure 
de la norme de la vitesse de l’écoulement du fluide.


