Spé MP lycée Rabelais Informatique Tronc Commun

CORRIGE DE L’EPREUVE Mines-Ponts 2023 D'ITC |

Partie I

Question 1 — (100)15 =1 x 162 +0 x 16 + 0 x 1 = 256.
La récompense est donc de 2,56 dollars.

Question 2 — Aprés avoir tracé les segments, le caractére dont il s’agit est un j.

Partie 11

Question 3 —

SELECT COUNT (%)
FROM Glyphe
WHERE groman = True

Question 4 —

SELECT G.gdesc
FROM Police AS P JOIN Caractere AS C JOIN Glyphe AS G
ON G.code = C.code AND G.pid = P.pid
WHERE C.car = ’A’ AND P.pnom = ’Helvetica’ AND G.groman = False

Rem : Peut-étre pouvait-on remplacer la condition C.car = ’A’ par code = 65 (ce qui évitait une jointure).

Question 5 —

SELECT F.fnom , Count (*)

FROM Famille AS F JOIN Police AS P
ON P.fid = F.fid

GROUP BY P.fid

ORDER BY F.fnom ASC

Rem : ASC n’est pas indispensable car choisi par défaut.

Partie II1

Question 6 — Remarque : il y a une coquille ici dans I’énoncé au niveau du type de la variable que doit renvoyer
la fonction. Il s’agit d’une liste de listes de flottants ([[float]]) et non une liste de flottants ([float]).
L’exemple pris dans I’énoncé était clair cependant sur ce qui était attendu.

def points(v):
liste = []
for multil in v:
for point in multil:
liste.append(point)
return liste

Question 7 —

def dim(l,n):
liste = []
for sl in 1:
liste.append(sl[n])
return liste

Spé MP lycée Rabelais Informatique Tronc Commun

Question 8 —

def largeur (v):

listePoints = points(v)
listeAbscisses = dim(listePoints ,0)
m , M = min(listeAbscisses) , max(listeAbscisses)

return M-m

Question 9 —

def obtention_largeur (police):

alphabet = ’abcdefghijklmnopqrstuvwxyz’
listeLargeur = []
for ¢ in alphabet:

for r in [True , Falsel]:

v = glyphe(c,police,r)

1 largeur (v)

listelLargeur .append (1)
return listelargeur

Question 10 —

def transforme(f,v):

vTrans = []

for multil in v:
multiLTrans = []
for point in multil:

multilLTrans .append (f (point))

vIrans.append (multilLTrans)

return vTrans

On peut le faire en compréhension :

def transforme (f,v):
vIrans = [[f(point) for point in multil] for multil in v]
return vTrans

Question 11 — L’abscisse de chaque point est divisée par deux alors que son ordonnée reste inchangée. L’effet
visuel est un écrasement horizontal.

Question 12 —

def yyy(p):
return [p[0]+0.5*xp[1] , pl[1]]

def penche(v):
return transforme (yyy,v)

Spé MP lycée Rabelais Informatique Tronc Commun

Partie IV
Question 13 — Les pixels encrés par 'exécution de la ligne 15 sont : (0,0), (1,0), (2,1), (3,1), (4,1), (5,2), (6,2).

Question 14 — Lors de I'exécution de la ligne 16, la variable dx utilisée dans la fonction prend la valeur —8. La
boucle utilisée dans la fonction est donc appelée par : for i in range(1,-8). Aucun pixel n’est donc encré.
Pour résoudre ce probléme, on pourrait mettre l’assertion suivante en début de fonction (apreés la définition de dx)
: assert dx > O.

Afin de tracer le segment lorsque dx est négatif, il suffira alors d’appeler cette méme fonction en échangeant les
roles de pO et pl.

Question 15 — Les pixels encrés par I’éxécution de la ligne 17 sont : (3,0), (4,4) et (5,8).

Ces pixels sont trop éloignés pour donner 'impression d’une ligne continue. Le probléme vient ici du fait que dy
est plus grand que dx. Pour y remédier, il faut écrire une fonction similaire & trace_cadrant_est qui échange les
rOles des abscisses et des ordonnées.

Question 16 — La fonction suivante sera destinée a tracer les segments pour lesquels dy est plus grand que dx
(en valeur absolue). On introduit également 1’assertion invoquée a la question 14.

def trace_cadrant_sud(im,p0,pl):

x0, y0O = pO

x1, yl1 = pil

dx, dy = x1-x0, yl-yO

assert dy > O

im.putpixel (p0, 0)

for j in range(1l, dy):
p = (x0 + floor (0.5 + dx*j/dy), yO + j)
im.putpixel(p, 0)

im.putpixel(pl, 0)

Question 17 — Dans cette fonction, il nous faut éviter les problémes soulevés lors des questions précédentes :

e sélectionner trace_cadrant_est ou trace_cadrant_sud selon que dx est plus grand ou non que dy (en
valeur absolue) ;

e s’assurer que dx (ou dy) est positif en inversant éventuellement les roles de pO et p1;

e s’assurer que la fonction trace bien un point si p0O est égal a p1.

def trace_segment (im,pO0,pl):
x0, y0O = pO
xl, yl1 = pil
dx, dy = x1-x0, yl-yO
if abs(dx) > abs(dy):
if x1 > xO0:
trace_cadrant_est (im,p0,pl)
else
trace_cadrant_est (im,pl,p0)
else
if y1 > yO:
trace_cadrant_sud (im,p0,pl)
elise
trace_cadrant_sud (im,pl,p0)
#le cas o\‘u pl==p0 n’a pas engendr\’e de trac\’e dans ces alternatives
if pl == pO:
im.putpixel (p0,0)

Spé MP lycée Rabelais Informatique Tronc Commun

Partie V

Question 18 — Pour fixer les idées, en notant pz=(xpz,ypz) : (0,0) doit étre envoyé sur (xpz,ypz), (1,0) doit
étre envoyé sur (xpz + taille, ypz), (0,1) doit étre envoyé sur (zpz, ypz — taille).

def position(p,pz,taille):
Xpz , ypz = pz
xp = xpz + floor(taille * x)
yp = ypz - floor(taille * y)
return (xp , yp)

Remarque : que se passe-t-il si taille vaut 1 7

Question 19 —

def affiche_car(page,c,police,roman,pz,taille):
c_vect = glyphe(c,police,roman)
1 = floor(largeur (c_vect)*taille)
#on doit tracer chaque multiligne de c_vect
for multil in c_vect:
nbPoints = len(multiLl)
on traite le cas o\‘u il n’y a qu’un seul point
if nbPoints == 0:
pO = position(multilL [0] , pz , taille)
trace_segment (page , p0O , p0)
else
on trace chacun des segments de multil
for indicePoint in range (1,nbPoints):
on r’ecup‘ere les coordonn\’ees enti\‘eres des points
pO = position(multil [indicePoint-1] , pz , taille)
pl = position(multilL[indicePoint] , pz , taille)
trace_segment (page , p0 , pl)

return 1

Question 20 —

def affiche_mot(page,mot,ic,police,roman,pz,taille):
for ¢ in mot:
1 = affiche_car(page,c,police,roman,pz,taille)
pz += 1 + ic
pz -= ic
return pz

Spé MP lycée Rabelais Informatique Tronc Commun

Partie V1

Question 21 — Cet algorithme construit chaque ligne de la maniére suivante : il empile les mots sur une ligne
(nligne) jusqu’a ce que le mot a traiter ne puisse pas étre empilé pour cause de dépassement (condition if (c+1)
> L) ; lorsque c’est le cas, la ligne est ajoutée au texte et on passe a la ligne suivante.

Cet algorithme peut étre qualifié de glouton pour la raison suivante : la décision d’empiler un mot (ou non) sur une
ligne est prise uniquement en considérant la place restant sur cette ligne et la taille du mot, et non en considérant
la situation dans sa généralité. Cette optimisation est locale et non globale.

Question 22 — Pour le découpage a) :

e ligne 1 (i=0et j=2): 0

e ligne 1 (i=3 et j=3) : 16

e ligne 1 (i=4 et j=4) : 16

Pour le découpage b) :

e ligne 1 (i=0et j=1): 9

e ligne 1 (i=2et j=3): 1

e ligne 1 (i=4 et j=4) : 16

Avec le découpage a), on a une somme des cotits de 32 et avec le découpage b), on a une somme des cotits de
26. Ce second découpage est donc meilleur avec ce critére.

Question 23 — Remarque : que désigne m dans I’énoncé ? J’écrirais plutot : memo = {len(lmots):0} en sup-
posant la variable 1lmots définie auparavant.

memo = {len(lmots):0}
def progd_memo (i,lmots,L,memo):
if i not in memo:
mini = float ("inf")
for j in range(i+1l,len(lmots)+1):
d = progd_memo (j,lmots,L) + cout(i,j-1,1lmots,L)
if d < mini:
mini = d
memo [i] = mini

Cette fonction ne renvoie rien ; on peut ensuite récupérer la valeur de d(i) par la commande memo [i].

Question 24 — Notons C(n,%) le nombre d’opérations a effectuer pour cette fonction lorsque le nombre de mots
est n et l'indice i. Pour ¢ = 0 (ce qui est 'objectif final), la boucle permettant de trouver le minimum donne la

relation suivante :
n

C(n,0)=> C(n,j)+K xj;

j=1

ou K est une constante. La deuxiéme partie de chaque terme de cette somme est due aux opérations faites par la
fonction cout.

Pour résoudre le probléme de taille n, le cotlit est donc supérieur & la somme des cofits pour résoudre les problémes
de tailles 1 & n — 1. Cela donne une complexité exponentielle.

Etudions maintenant 'algorithme programmé de bas en haut. La boucle externe est de taille n, la boucle
interne de taille inférieure ou égale & n. Au sein de cette boucle interne, on fait appel a la fonction cout dont la
complexité peut étre majorée (grossiérement) par une constante fois n.

On obtient donc une complexité majorée par un O(n?) (ce qui peut peut-étre étre amélioré en affinant 'analyse
de l'utilisation de la fonction cout).
Cette complexité est bien meilleure car elle est polynomiale.

Question 25 —

Spé MP lycée Rabelais Informatique Tronc Commun

def lignes(mots,t,L):
listelignes = []
i=20
while i < len(lmots):
listelLignes.append(mots[i:t[i]]):
i = t[i]
return listelignes

Question 26 — Le nombre d’espaces a répartir pour chaque ligne est égal a la somme des nombres de lettres de
chaque mot de la ligne. Il faut répartir ces espaces entre les mots. S’il y a n mots sur la ligne, cela fait n — 1
espaces. Que fait-on si le nombre d’espaces n’est pas un multiple de n —1 ? Il faudrait pouvoir obtenir des espaces
de taille non entiére.

On écrit la fonction qui suit sans tenir compte de ce probléme.

def formatage(lignedemots ,L):

chaine = ""

for ligne in lignedemots:
espaceTotal = L - sum([len(mot) for mot in ligne])
nombreEspaceEntreDeuxMots = espaceTotal // (len(ligne)-1)
espaceEntreDeuxMots = nombreEspaceEntreDeuxMots * " "

chaine += ligne [0]
for i in range(l,len(ligne)):

chaine += espaceEntreDeuxMots + ligne[i]
chaine += "\n"

return chaine

