
Spé MP - Informatique Tronc Commun 2025/2026

TP7 : Autour des Probabilités

1 Quelques outils

Simulation de variables aléatoires

En ce qui concerne la simulation d’expériences aléatoires, on utilisera la fonction random() du module
random , importé par : import random as rd . Cette fonction renvoie un nombre (pseudo)aléatoire
dans [0; 1[.
On trouve bien sûr dans des bibliothèques Python des fonctions fournissant des simulations de toutes
sortes de lois (par exemple rd.randint(a,b) simule une loi uniforme sur {a, . . . , b}). Le but n’étant
pas de prendre en main ces modules, on se contentera des deux commandes simples ci-dessus.
On peut simuler d’autres expériences aléatoires à partir ce celles-ci. Par exemple, pour simuler une
variable aléatoire suivant un loi de Bernoulli de paramètre p :

• Première méthode :

def simulBer(p):
a=rd.random ()
if a<p:

return 1
else :

return 0

• Deuxième méthode (on a également importé
numpy (as np)) :

def simulBer2(p):
a=rd.random ()
return int(np.floor(a+p))

Diagramme en bâtons

Pour visualiser une loi discrète, on produira des diagrammes en bâtons à l’aide de la fonction bar du
module matplotlib.pyplot . Exemple :

import matplotlib.pyplot as plt
X=[x for x in range (5)]
Y=[1,2,1,2,1]
plt.bar(X,Y,width =0.1)

Pour superposer les diagrammes représentant deux lois sur un même graphique (pour les comparer par
exemple), il sera pratique de jouer sur les couleurs et de décaler légèrement les diagrammes. Sans effacer
le graphique obtenu précédemment, on peut lui en superposer un nouveau par :

X1=[x-0.1 for x in X]
Y1=[1,3,2,0,2]
plt.bar(X1,Y1,width =0.1, color=’r’)

2 Lois usuelles
Loi binomiale

Écrire une fonction simulBin(n,p) qui simule la réalisation d’une variable aléatoire de loi binomiale de
paramètres n et p. On pourra utiliser la fonction simulBer .
Tester cette fonction en calculant la moyenne empirique obtenue sur un grand nombre de tirages.

Loi géométrique

Écrire une fonction simulGeom(p) qui simule la réalisation d’une variable aléatoire de loi géométrique
de paramètre p. On pourra utiliser la fonction simulBer .
Tester cette fonction en calculant la moyenne empirique obtenue sur un grand nombre de tirages.

-1-

Spé MP - Informatique Tronc Commun 2025/2026

3 Simulation et représentation d’ une loi

Pour obtenir une approximation d’une loi (à espace d’état fini), on simule un grand nombre de fois une
variable aléatoire distribuée suivant cette loi, puis on estime les fréquences empiriques de chaque valeur.
De même, si l’on veut estimer l’espérance d’une loi, on l’approche par la moyenne empirique sur un grand
nombre de simulations (tout cela repose sur la loi des grands nombres).
On illustre cela sur l’exemple suivant.
On dispose d’une urne contenant n boules où n est un nombre entier tel que n ≥ 2. Ces boules sont
numérotées 1, 2, . . . , n, et on les extrait au hasard, une par une, et sans remise dans l’urne. Pour 1 ≤ k ≤
n, on désigne par Yk la variable aléatoire valant 1 si la k-ème boule tirée porte le numéro k, et 0 sinon.
Enfin, on note X la variable aléatoire somme : X = Y1+Y2+ · · ·+Yn. On s’intéresse ici au cas où n = 3.

1. Étude théorique

(a) Écrire tous les résultats possibles de l’expérience précédente (pour n = 3), c’est-à-dire tous les
triplets (i, j, k) indiquant un ordre possible dans lequel on a retiré les boules (i représente le
numéro que porte la première boule tirée, j celui de la deuxième boule tirée et k celui de la
troisième boule tirée).

(b) Indiquer la valeur prise par la variable aléatoire X pour chacun des résultats possibles, et en
déduire la loi puis l’espérance de X.

2. Simulation

(a) Compléter la fonction suivante afin qu’elle simule la réalisation d’un tirage de la variable
aléatoire X.

def simulX ():
a1=rd.random () # pour simuler le premier tirage
if a1 <1./3: # premier tirage : boule num\’ero 1

a2=rd.random ()# pour simuler le deuxi\‘eme tirage
if a2< ... # deuxi\‘eme tirage : boule num\’ero 2

X=...
else :

X=...
elif ... :

... (plusieurs lignes)
else :

... (plusieurs lignes)
return X

(b) Écrire un programme qui simule N = 100 (puis augmenter) fois cette variable aléatoire et
calcule la moyenne empirique.

(c) Compléter le programme suivant afin qu’il simule N = 100 tirages de la variable alétoire X,
affiche la loi empirique de X obtenue par ces tirages (c’est à dire la proportion de chacune des
valeurs obtenues) sous forme d’un diagramme bâtons.

l=[0,1,2,3] #valeurs prises par la v.a.
C=[0 for x in l] # compte le nombre de fois

o\‘u l’on obtient chaque valeur
for i in range(N):

Xi=simulX ()
...

Y=[....]
plt.bar(...,..., width =0.1)

-2-

Spé MP - Informatique Tronc Commun 2025/2026

Modifier ensuite le programme précédent pour qu’il superpose le diagramme en bâtons de la
loi de X à celui de la loi empirique obtenue par simulation.

4 Méthode de Monte Carlo

La méthode de Monte-Carlo est une méthode de calcul d’intégrale (dans un sens large) basée sur la loi

des grands nombres : on va approcher E(X) par une moyenne empirique
1

n

∑n
k=1Xk, où Xk est une

simulation de la variable aléatoire X.
On connaît bien sûr d’autres méthodes (rectangles, trapèzes ...), mais dans certaines circonstances (en
dimension supérieure par exemple), ces méthodes sont coûteuses en calculs.

Premier exemple : calcul d’une valeur approchée de π

On s’éloigne un peu du cadre de votre cours de probabilité pour considérer une loi uniforme sur le carré
[0, 1]2 (on ne soulèvera pas de difficultés théoriques sur les probabilités). Une variable aléatoire suit cette
loi lorsque, pour tout sous-ensemble A de [0, 1]2 (vérifiant certaines conditions), la probabilité que X
appartienne à A est la surface de A.
Étant donnée une variable aléatoire X suivant cette loi, on considère la variable aléatoire Y valant 1 si
X est dans le quart de disque D de rayon 1 contenu dans [0, 1]2 et 0 sinon.
La variable aléatoire Y suit une loi de Bernoulli de paramètre π/4 (qui est également son espérance).
Le programme suivant simule N réalisation de Y et affiche la moyenne empirique obtenue (×4) :

N=10000
S=0.
for i in range(N):

x,y = rd.random(),rd.random ()
if x**2+y**2<1:

S+=1
print (4*S/N)

À partir de la loi géométrique

On souhaite calculer, pour p ∈]0, 1[, la somme de la série S =
∑+∞

k=1

1

k
pk (remarque : somme qui vaut

− ln(1− p) ; il y a donc bien sûr d’autres moyens de la calculer).
On remarque que (en notant p = 1− q) :

+∞∑
k=1

1

k
pk =

p

q

+∞∑
k=1

1

k
q(1− q)k =

p

q
E

(
1

X

)
;

où X suit une loi géométrique de paramètre q.
On a déjà programmé une fonction simulant une loi géométrique.
Compléter le programme suivant afin qu’il calcule et affiche une valeur approchée de S suivant la méthode
de Monte-Carlo :

p = 0.4 ; q = 1-p
N=10000
T = 0.
for i in range(N):

X = ...
T += ...

moy = ...
print (...

-3-

Spé MP - Informatique Tronc Commun 2025/2026

5 À partir de la loi géométrique

Un joueur réalise une suite de lancers indépendants d’une pièce. Cette pièce donne pile avec la probabilité
p (0 < p < 1) et face avec la probabilité q = 1− p.
On note N la variable aléatoire égale au rang d’apparition du premier pile.
Si N prend la valeur n, le joueur place n boules numérotées de 1 à n dans une urne, puis il extrait une
boule au hasard de cette urne. On dit que le joueur a gagné si le numéro porté par la boule tirée est
impair et on désigne par A l’événement : “ le joueur gagne ”. On appelle X la variable aléatoire égale au
numéro porté par la boule extraite de l’urne.
On suppose les variables aléatoires définies sur un espace probabilisé (Ω,A, P) que l’on ne cherchera pas
à expliciter.

1. Écrire une fonction SimulN(p) qui simule la réalisation de la variable aléatoire N .

2. Écrire une fonction SimulX(p) qui simule cette expérience aléatoire et renvoie la valeur de X.

3. Écrire un script qui fournit une valeur approchée de P (A) (avec p en entrée ainsi que le nombre N
de simulations).

4. Le but de ce qui suit est de déterminer P (A) en fonction de p.

(a) Montrer, pour k ∈ N, que

P (X = 2k + 1) =
p

q

∫ q

0

t2k

1− t
dt .

On pourra écrire
t2k

1− t
comme la somme d’une série.

(b) En déduire P (A).

(c) Vérifier les observations sur certaines valeurs de p.

6 Processus de Galton-Watson

Le processus que nous allons étudier a été proposé dans les années 1870 pour étudier l’extinction des
noms de familles.
On part de la génération 0 où un certain nom est porté par un individu. On suppose qu’à chaque
génération, chaque individu donne naissance à un certain nombre d’enfants (garçons si l’on étudie les
noms de famille dans le contexte de l’époque) selon une loi de probabilité identique pour tous les individus,
et disparaît ensuite. En notant Nn le nombre d’individus à la n-ème génération et Xn,j le nombre de
descendants du j-ème individu de la n-ème génération, on a donc N0 = 1 et

Nn+1 =

Nn∑
j=1

Xn,j ;

les (Xn,j)(n,j)∈N2 formant une famille de variables aléatoires identiquement distribuées, supposées in-
dépendantes. On supposera de plus que ces V.A. possèdent un moment d’ordre 1, noté m, et qu’elles ne
sont pas constantes.
On note, pour k ∈ N, pk = P (Xn,j = k) et f la fonction génératrice commune des Xn,j .
Le but de ce qui suit est d’étudier l’évolution de la probabilité que le nom soit éteint à la génération n :
P (Nn = 0).

-4-

Spé MP - Informatique Tronc Commun 2025/2026

Étude expérimentale

On donne une loi de probabilité sous forme d’une liste L telle que pk = L[k].

1. Écrire une fonction simul_X(L) qui simule la réalisation du tirage d’une variable aléatoire de loi
L .

2. Écrire une fonction simul_N(n,L) qui simule le processus décrit ci-dessus durant n générations
et renvoie la valeur de Nn.

3. Compléter le programme dans le fichier TP-GW-ACompleter.py afin qu’il simule M fois le processus
décrit ci-dessus durant une durée T , qu’il estime la valeur empirique de la probabilité P (Nn = 0)
pour 0 ≤ n ≤ T et qu’il trace la suite de ces valeurs.

4. Essayer avec L1=[0.3,0.5,0.2] , L2=[0.2,0.5,0.3] . Qu’observe-t-on ?

Étude théorique

1. On se donne une V.A. N à valeurs dans N, de fonction génératrice GN , une suite (Xk)k∈N de V.A.
à valeurs dans N indépendantes entre elles et indépendantes de N , identiquement distribuées, de
fonction génératrice commune GX . On définit une nouvelle V.A. Y par :

Y =

N∑
k=1

Xk .

Montrer qu’alors GY = GN ◦GX .

2. En déduire que la fonction génératrice de Nn est f composée n fois. Que vaut alors P (Nn = 0) ?

3. Tracer sur [0; 1] les graphiques des fonctions génératrices correspondant aux deux exemples précé-
dents. Quelle est la différence entre ces deux graphiques et en quoi explique-t-elle la différence de
comportement du processus.

4. Montrer que l’on a l’alternative suivante :

• Soit m > 1 et la limite de P (Nn = 0) est strictement inférieure à 1.

• Soit m ≤ 1 et la limite de P (Nn = 0) est égale à 1.

-5-

