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Mesures de champs magnétiques

Dans ce problème sont abordées quelques méthodes de mesure de champs magnétiques, permanents ou 
éventuellement lentement variables dans le temps. Les vecteurs seront traditionnellement surmontés 
d’une flèche ; sauf s’ils sont unitaires et seront alors surmontés d’un chapeau .
Le référentiel terrestre sera considéré comme galiléen. On rappelle que μ0 = 4π × 10−7 H · m−1.

I- La balance de Cotton
La photo d’un modèle de balance de Cotton est placée ci-dessous Ce type de balance, destinée à la mesure
de champ magnétique, a été mis au point par Aimé Cotton en 1900. Elle est constituée de deux fléaux. 
L’un, à gauche, comprend sur sa périphérie, un conducteur métallique qui sera parcouru par un courant et 
dont une partie sera placée dans le champ magnétique, uniforme et permanent, à mesurer. Le conducteur 
sera soumis à des forces de Laplace et la balance penchera du côté de ce fléau. L’autre comporte un 
plateau sur lequel on peut déposer des masses marquées pour équilibrer la balance et déduire ainsi la 
norme du champ magnétique. Le schéma de principe de la balance est représenté sur la figure 1 .

Sur le fléau dessiné à gauche, les conducteurs permettent le passage d’un courant d’intensité i, selon le 
parcours A1 → A2 → A3 → A4 → A5 → A6. Les portions de circuit A2A3 et A4A5 sont des arcs de 
cercle de même centre O. L’ensemble des deux fléaux constitue un système rigide, mobile sans 
frottement, autour d’un axe horizontal passant par le point O et noté Oz.
On désigne par C le milieu du segment A3A4 et D le point de suspension du plateau. On note d1 la 
distance OC entre les points O et C, d2 la distance OD entre les points O et D et l la longueur du segment 
A3A4.
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La procédure de mesure est la suivante :
1- Equilibrage «  à vide » : en l’absence de courant i et de masses marquées dans le plateau, le 
contrepoids C est déplacé de fa¸con à ce que la balance soit à l’équilibre, les trois points C, O et D étant 
alignés sur l’horizontale.
2- Mesure du champ : on ferme le circuit électrique, ce qui permet au courant d’intensité i de circuler 
« dans la balance », le fléau de gauche penche vers le bas ; on ajoute alors des masses dans le plateau 
jusqu’à ce que la balance soit à l’équilibre, les trois points C, O et D étant alignés sur l’horizontale.

1 - Montrer que, lorsque l’équilibrage à vide est réalisé, le centre de masse, G, des parties mobiles de la 
balance est situé sur la verticale passant par O .
2 -  Lorsque le courant circule « dans la balance » montrer que le moment résultant en O des forces de 
Laplace s'éxerçant sur les parties en arc de cercle est nul.
3 -  A l’équilibre, en présence de courant et de champ magnétique, établir l’expression du moment en O 
des forces de Laplace. En déduire la relation liant B=∥B⃗ ∥ , la somme m des masses marquées posées 
sur le plateau, i, l, d1, d2 et le module g du champ de pesanteur g⃗ .
4 - La sensibilité de la balance étant de δm = 0,05 g, déterminer la plus petite valeur de B mesurable pour 
i = 10 A, g = 10 m · s−2, l = 5 cm et d1 = d2 = 10 cm. En comparant cette valeur avec une ou des 
références connues, conclure quant à l’utilisabilité de la balance.
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II- Utilisation d’une boussole

Dans cette partie on utilise une boussole constituée d’une aiguille aimantée mobile, présentant un axe de 
symétrie longitudinal. Cette aiguille peut pivoter sans frottement autour d’un axe passant par son centre
de masse G et perpendiculaire à l’axe de symétrie. La liaison avec l’axe est du type «  pivot parfait »sans 
frottement. Cette aiguille aimantée se comporte comme un dipôle magnétique de moment magnétique



M⃗ m ayant la direction de l’axe de symétrie de celle-ci.
Cette boussole est placée dans un champ magnétique B⃗  permanent et localement uniforme (il est 
considéré comme uniforme tout le long de l’aiguille aimantée). Les forces magnétiques soumettent la 
boussole `a un couple Γ⃗=M⃗ m ∧B⃗ . On note J le moment d’inertie de l’aiguille aimantée par rapport `a
l’axe de rotation. Dans un premier temps nous allons étudier les petits mouvements de l’aiguille autour de
sa position d’équilibre stable, en négligeant les frottements fluides dus à l’air. Le champ magnétique et 
l’axe de symétrie de l’aiguille sont dans un plan horizontal. On appelle α l’angle entre la direction de B⃗
et celle de M⃗ m .
5 - Après avoir exprimé le couple des forces magnétiques s’exerçant sur l’aiguille en fonction des 
paramètres du problème que sont B=∥B⃗ ∥ et M m=∥M⃗ m ∥  et α, établir l’équation différentielle dont 
α est solution. En déduire les positions d’équilibres de l’aiguille, et indiquer sans calcul l’équilibre stable. 
En supposant α  1, donner l’expression de α (t) en notant α≪ 0 la valeur maximale de cet angle, en faisant 

apparaître le rapport K=
M m

J
  et en supposant que 

d α

dt
(t=0)=0 rad.s−1 .

On cherche à mesurer le rapport K. Pour cela on mesure la période des petites oscillations de l’aiguille 
aimantée placée dans un champ magnétique uniforme connu, crée par des bobines de Helmholtz.
Les bobines de Helmholtz sont constituées de deux bobines plates, c’est-à-dire d’épaisseurs négligeables, 
identiques et équidistantes. Chacune d’entre elles comprend N spires circulaires de rayon R, parcourues 
par le même courant d’intensité I et dont le sens est indiqué sur la figure 3. Ces deux bobines sont 
distantes de d = R. L’axe Ox de révolution des spires a pour origine le point O tel que les bobines soient 
équidistantes de celui-ci.

6- On considère dans un premier temps une spire circulaire de centre C, de rayon R , d'axe ( Ox ) 
parcourue par un courant d'intensité I .

Justifier que le champ magnétique créé au point M par la spire s'écrit B⃗=B u⃗x .

On montre que B=
µ0 I

2R
sin 3

(α)  avec α angle non orienté défini positif . 

7- Montrer qu’en un point M situé à l’abscisse x, sur l’axe Ox, le champ magnétique  créé par les bobines 
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8- Les bobines ont un rayon R = 15 cm. On donne le développement limité suivant
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Dans quelle zone située sur l’axe Ox, peut-on considérer que la variation relative de la norme du champ 
par rapport à celle en O est inférieure à 2% ? Préciser la valeur numérique de B(O) sachant que N = 50
spires et I = 4 A ?
8 -  La valeur mesurée de la période des petites oscillations de l’aiguille aimantée est T = 0,30 s. 
Déterminer l’unité et calculer la valeur numérique du rapport K pour cette boussole.
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III- Utilisation d’une sonde à effet Hall

L’élément principal d’une sonde à effet Hall est une plaquette constituée d’un semi-conducteur, dopé N, 
dans laquelle les porteurs de charges libres sont des électrons, dont la charge est q = - e = -1,6 × 10−19 C.
La densité volumique de ces électrons dans cette plaquette est n = 3,30 × 1018 m−3.
Cette plaquette possède la forme d’un parallélépipède, dont les six faces sont numérotées conformément à
la figure 4, ses dimensions sont a = 3 mm, b = 6 mm et c = 0,2 mm. Les faces 1 et 3 sont reliées aux
bornes d’une source de courant idéale, délivrant un courant d’intensité I0 = 10 mA constante.
En régime permanent, on peut considérer que les lignes de courant sont rectilignes et parallèles, le vecteur
densité volumique de courant est uniforme et s’écrit j⃗= j ûx .

9- Etablir l’expression de la vitesse v⃗ des porteurs de charge et calculer sa norme.

La plaquette est placée dans une zone de l’espace où règne un champ magnétique considéré comme 
constant, tel que B⃗=Bû y avec B > 0.

 10- Après avoir exprimé la force magnétique s’exerçant sur une charge mobile, justifier que des densités 
surfaciques de charge apparaissent sur les faces 2 et 4. On précisera les signes de ces densités.
Ces densités surfaciques de charges créent un champ électrique E⃗h=Ehûz au sein de la
plaquette. En régime permanent, la vitesse des porteurs de charge reste inchangée.

13 - En appliquant le principe fondamental de la mécanique à un porteur de charge en projection sur ûz
, déterminer l’expression de Eh . Montrer qu’il apparaît une différence de potentiel uh=V 4−V 2 entre 
les faces 4 et 2. Celle-ci est appelée tension de Hall, on l’écrira sous la forme uh=γ B en précisant 
l’expression et la valeur numérique de la constante γ .



La création de la source de courant délivrant l'intensité I0 nécessite un circuit électronique de commande. 
Les tensions de Hall étant souvent très faibles, on doit les amplifier à l’aide d’un circuit électronique de 
mesure. Le circuit de commande comprend un circuit intégré, nommé régulateur de tension, ayant trois 
broches, notées : e (entrée), s (sortie) et c (commun). La tension u = Vs − Vc est constante et sa valeur est 
fixée à u = 5 V. La tension d’alimentation est Vcc = 9V . L’intensité Ic du courant entrant en c, est 
contrôlée à la valeur Ic = 10 nA. Le dipôle AM ainsi réalisé est représenté sur la figure 5.

12-  Pour quelle valeur de la résistance R le dipôle AM se comporte-t-il comme une source de courant 
idéale, délivrant un courant I0 = 10 mA ?

Le circuit de mesure en utilise un amplificateur différentiel représenté sur la ci-dessous , qui utilise un 
ALI, supposé idéal et en fonctionnement linéaire.

13-Etablir la relation entre us et uh = V4 − V2. A quelle condition sur R2 et R1 la tension de Hall est elle 
amplifiée ?
14- Etablir l’expression de la résistance d’entrée sur la face 4. Quel problème pose le résultat obtenu ?
15- Afin de pallier ce problème, on insère des montages suiveur entre les faces 2 et 4 et le montage 
précédant . Justifier que ces suiveurs permettent de résoudre le problème énoncé dans la question 14 .
16- Représenter le montage complet incluant la plaquette semi-conductrice et l’électronique qui permet la
mesure de la composante horizontale du champ magnétique terrestre.
17- On choisit R1 = 100 Ω et R2 = 1 kΩ. On obtient alors us = 20,0 mV, quelle est la valeur de cette 
composante ?

On veut maintenant vérifier l’influence du champ magnétique propre B⃗0 créé par le courant I0. Pour cela
on adopte un modèle simplifié dans lequel la plaquette est supposée infiniment longue dans les directionss
ûx  et ûz  uniquement. Le semi-conducteur est supposé avoir la même perméabilité μ0 que le vide.

18- Déterminer, dans ce modèle, la direction de B⃗0 ainsi que les variables spatiales du problème dont ce
champ ne dépend pas . 

I
0



A l'intérieur de la plaquette où la variable y∈[
−c
2
,
c
2
] , déterminer l'expression de B⃗0  à partir d'une 

équation locale puis à partir du théorème d'Ampère ( vous aurez soin de bien justifier vos calculs ) .  
Calculer la valeur maximale de la norme de ce champ. Dans la mesure du champ terrestre, pouvait-on 
négliger l’influence de B⃗0 ?
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IV-  Utilisation d’une magnétorésistance
On considère un conducteur électrique se présentant sous la forme d’une couronne cylindrique d’axe Oz, 
de hauteur h, délimitée par un cylindre intérieur de rayon r1 et par un cylindre extérieur de rayon r2. A 
l’aide d’une source de tension on impose les potentiels V (r1) = V1 et V (r2) = V2. On se place en régime 
permanent et on néglige les effets de bord, ce qui revient à supposer que le comportement de cette 
couronne est le même que si elle était infiniment haute.
L’existence de deux équipotentielles cylindriques permet d’émettre l’hypothèse que le potentiel ne dépend

que de r, ainsi V=V (r ) ,ΔV (r )=
1
r
d
dr

(r
dV
dr

) et ⃗grad (V (r ))=
dV
dr

ûr

19-  Le conducteur est globalement non chargé, vérifier que l’hypothèse V = V (r) est la seule possible. 
Déterminer le potentiel électrique en un point M de ce conducteur. En déduire l’intensité E du champ 
électrique E⃗ en ce même point en fonction de V1, V2, r1, r2 et r.

La couronne cylindrique est placée dans un champ magnétique B⃗=Bûz avec B > 0. Le conducteur 
contient n électrons libres par m3. On considère de plus le modèle de Drüde dans lequel chaque électron 
de vitesse v⃗ est soumis, en plus des forces électromagnétiques, à une force de frottement s’exprimant 
sous la forme F⃗=−λ v⃗  avec λ>0 .
20-  Pour chaque électron, établir, en régime permanent, la relation entre v⃗ , B⃗ et E⃗ paramétrée par
λ  et la charge élémentaire e. En déduire l’expression, dans la base cylindrique (ûr , ûθ , ûz) , des 

coordonnées de v⃗ en fonction de e, λ, E et B puis celles du vecteur densité volumique de courant j⃗ .
21- Exprimer l’intensité du courant électrique traversant une surface équipotentielle de rayon r. En 
déduire la résistance électrique R de la couronne, en fonction de e, n, λ, B, h, r1 et r2.

On note R0 la résistance en l’absence de champ magnétique. Exprimer l’écart relatif ϵ=
R−R0

R0

en

fonction de e, B et λ. Calculer la valeur numérique de R0 ainsi que celle de ε pour B = 1,0 mT,
r1 = 1,0 mm, r2 = 3,0 mm, h = 1,0 mm, n = 1,1 × 1021 m−3 et λ = 1,8 × 10−17 kg · s−1.
Commenter l’utilisation du phénomène pour la mesure de champs magnétiques.
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