Systèmes équivalents

1- Définition et intérêt du système équivalent

1.1- Définition

Un système équivalent doit remplir deux conditions quelque soit les vitesses des systèmes:

- Avoir la même énergie cinétique que le système étudié
- Avoir les mêmes puissances que le système étudié

1.2- Exemple

Soit un système S constitué de deux arbres 1 (arbre moteur) et 2 liés au bâti 0 par deux liaisons pivot. Et une crémaillère liée au bâti par une liaison glissière. Les arbres 1 et 2 ont respectivement I_m et I_2 pour moment d'inertie par rapport aux axes, et la crémaillère 3 à une masse M_3 .

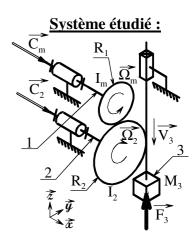
L'arbre 1 porte une roue dentée de rayon R_1 engrenant avec la roue dentée portée par l'arbre 2 et de rayon R_2 . Enfin la crémaillère 3 est entrainée en translation par la roue dentée de l'arbre 2.

Ce système est soumis à trois actions extérieures : Deux couples de vecteurs $\overrightarrow{C_m}$ et $\overrightarrow{C_2}$ appliqués respectivement sur 1 et 2 et une force $\overrightarrow{F_3}$.

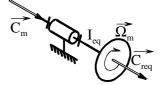
On note $\overrightarrow{\Omega_m}$ et $\overrightarrow{\Omega_2}$ les taux de rotation des arbres 1 et 2 et $\overrightarrow{V_3}$ le vecteur vitesse de la translation de la crémaillère 3 par rapport au bâti.

Le système équivalent se résume à un arbre E lié au bâti par une liaison pivot identique à celle entre le bâti et l'arbre 1. Cet arbre a le même taux de rotation $\overrightarrow{\Omega_m}$ par rapport au bâti que l'arbre 1 du système étudié.

Cet arbre équivalent a un moment d'inertie I_{eq} par rapport à son axe de rotation. Et s'applique sur cet arbre un couple résistant équivalent C_{req} .



Système équivalent :



Les deux systèmes ayant la même énergie cinétique, on a :

$$\frac{1}{2}$$
. I_{eq} . $\overrightarrow{\Omega_m}^2 = \frac{1}{2}$. I_m . $\overrightarrow{\Omega_m}^2 + \frac{1}{2}$. I_2 . $\overrightarrow{\Omega_2}^2 + \frac{1}{2}$. M_3 . $\overrightarrow{V_3}^2$

Les deux systèmes ayant les mêmes puissances, on a :

$$\overrightarrow{C_m} \cdot \overrightarrow{\Omega_m} + \overrightarrow{C_{req}} \cdot \overrightarrow{\Omega_m} = \Sigma P(Ext \rightarrow S, R_g) + \Sigma P(Int \rightarrow S, R_g)$$

$$\overrightarrow{C_m} \cdot \overrightarrow{\Omega_m} + \overrightarrow{C_{req}} \cdot \overrightarrow{\Omega_m} = \overrightarrow{C_m} \cdot \overrightarrow{\Omega_m} + \overrightarrow{C_2} \cdot \overrightarrow{\Omega_2} + \overrightarrow{F_3} \cdot \overrightarrow{V_3}$$

On a alors une écriture simplifiée du PFD : $C_m + C_{req} = I_{eq} \cdot \omega_m$

Ou du TEC:
$$C_{m} \cdot \omega_m + C_{req} \cdot \omega_m = \frac{d (1/2.I_{eq} \cdot \omega_m^2)}{dt}$$

- 🖝 L'inertie équivalente se calcule à partir des différentes inerties et des rapports de transmission.
- Le couple résistant équivalent se calcule à partir des différentes actions (autre que le couple moteur) extérieures et intérieures et des rapports de transmission.
- En général on a un couple résistant équivalent négatif.

2- Calcul des inerties et moments équivalents

2.1- Moment d'inertie équivalent

$$\sim \lambda = \frac{V_3}{\omega_2} = R_2$$
 le rapport de transmission de l'arbre 2 à la crémaillère 3

$$L'\text{\'equation (a) devient:} \qquad \frac{1}{2} \cdot \mathbf{I}_{eq} \cdot \overrightarrow{\Omega_{m}}^{2} = \frac{1}{2} \cdot \mathbf{I}_{m} \cdot \overrightarrow{\Omega_{m}}^{2} + \frac{1}{2} \cdot \mathbf{I}_{2} \cdot \mathbf{k}^{2} \cdot \overrightarrow{\Omega_{m}}^{2} + \frac{1}{2} \cdot \mathbf{M}_{3} \cdot \lambda^{2} \cdot \mathbf{k}^{2} \cdot \overrightarrow{\Omega_{m}}^{2}$$

D'où le moment d'inertie équivalent sur l'arbre 1 : $I_{eq} = I_m + I_2 \cdot k^2 + M_3 \cdot \lambda^2 \cdot k^2$

2.2- Inertie équivalente ramenée sur un arbre

 \sim l'inertie équivalente du solide 3 ramenée sur l'arbre 1 : $M_3 \cdot \lambda^2 \cdot k^2$

2.3- Couple équivalent

L'équation (b) devient : $\overrightarrow{C_{req}}$. $\overrightarrow{\Omega_m} = \overrightarrow{C_2}$. k . $\overrightarrow{\Omega_m} + \overrightarrow{F_3}$. λ . k . $\overrightarrow{\Omega_m}$

D'où le couple équivalent sur l'arbre 1 : $C_{req} = C_2 \cdot k + F_3 \cdot \lambda \cdot k$

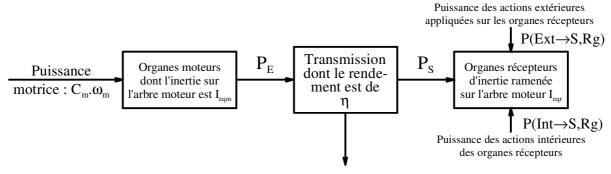
2.4- Couple équivalent ramené sur un arbre

On définit : $\ \ \$ le couple équivalent au couple C_2 ramené sur l'arbre 1 : C_2 . k

 $\$ e le couple équivalent à la force F_3 ramenée sur l'arbre 1 : $F_3 \cdot \lambda \cdot k$

3- Transmission avec un rendement η

3.1- Systèmes étudié et équivalent Soit la chaîne de transmission de puissance suivante :



Puissance dissipée (quantité positive) = $P_E - P_S = (1 - \eta)$. P_E

La transmission a un rendement η . Par définition ce rendement est le rapport entre les puissances à l'entrée de la transmission et celle à la sortie de la transmission.

Le rendement s'écrit donc :
$$\eta = \frac{P_S}{P_E}$$

Systemes equivalents.docx

3.2- Application du TEC

Sur le système constitué des organes moteur :

$$C_m.\omega_m. - P_E = I_{eqm}.\omega_m.\dot{\omega_m}$$

On en déduit :

$$P_E = C_m \cdot \omega_m \cdot - I_{eqm} \cdot \omega_m \cdot \omega_m$$

Sur le système constitué des organes récepteurs :

$$\Sigma P(Ext \rightarrow S, R_g) + \Sigma P(Int \rightarrow S, R_g) + \eta.P_E = I_{eqr}.\omega_m.\omega_m$$

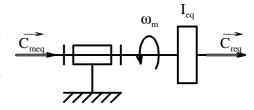
On en déduit :

$$\Sigma P(Ext \rightarrow S, R_g) + \Sigma P(Int \rightarrow S, R_g) + \eta \cdot C_m \cdot \omega_m = (\eta \cdot I_{eqm} + I_{eqr}) \cdot \omega_m \cdot \dot{\omega}_m$$

3.3- Modèle équivalent

Le modèle équivalent est un arbre dont la vitesse de rotation est celle du moteur : ω_m .

L'inertie I_{eq} de cet arbre est égale à la somme des inerties des organes en mouvement ramenées sur l'arbre moteur.



Cet arbre est soumis à deux couples :

- Tun couple moteur équivalent au couple moteur du modèle étudié
- Tun couple résistant équivalent aux différentes actions (autre que le couple moteur) extérieures et intérieures appliquées sur le système étudié

L'application du TEC à ce système donne :

$$C_{\text{meq}} \cdot \omega_{\text{m}} + C_{\text{req}} \cdot \omega_{\text{m}} = I_{\text{eq}} \cdot \omega_{\text{m}} \cdot \omega_{\text{m}}$$

On a alors une écriture simplifiée du PFD :

$$C_{\text{meq}} + C_{\text{req}} = I_{\text{eq}} \cdot \omega_{\text{m}}$$

Ou du TEC:
$$C_{meq} \cdot \omega_m + C_{req} \cdot \omega_m = \frac{d (1/2.I_{eq} \cdot \omega_m^2)}{dt}$$

Les différents paramètres du système équivalent se calculent alors de la manière suivante :

 $^{\circ}$ Couple moteur équivalent : $C_{meq} = \eta . C_m$

$$C_{meg} = \eta \cdot C_m$$

 $^{\circ}$ Moment d'inertie équivalent : $I_{eq} = \eta . I_{eqm} + I_{eqr}$

$$I_{eq} = \eta I_{eqm} + I_{eqr}$$

avec I_{eqm} et I_{eqr} les inerties équivalentes des organes moteur et récepteur ramenées sur l'arbre moteur.

© Couple résistant équivalent calculé à partir des actions extérieures et intérieures et des rapports de transmission.

Remarques:

- En général la puissance du couple résistant équivalent est négative.
- Si on a des puissances d'actions extérieures ou intérieures appliquées sur les organes moteur (autre que le couple moteur) celles-ci sont multipliées par le rendement η :

$$C_{req} = \eta.C_{reqm} + C_{reqr}$$

où : C_{reqm} est le couple résistant équivalent aux actions appliquées sur les organes moteur

C_{regr} est le couple résistant équivalent aux actions appliquées sur les organes récepteur