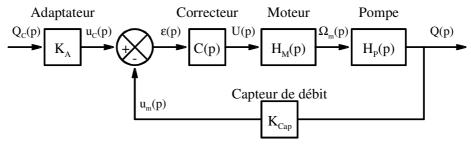
TD2 - Régulation de jet d'eau

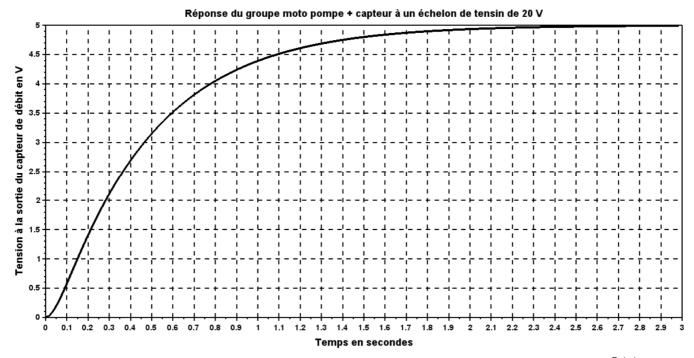
1- Présentation du mécanisme

Mise en situation


Pour un spectacle aquatique, on utilise des jets d'eau dont la hauteur est contrôlée. Pour contrôler cette hauteur, le débit d'eau alimentant chaque jet d'eau est régulé.

Notre étude s'intéresse à la régulation d'un de ces débits d'eau. Ce débit étant créé par un groupe moto pompe : C'est-à-dire un moteur à courant continu et une pompe volumétrique.

Description du système


Cet asservissement en débit du jet d'eau est donc décrit par le schéma bloc ci-dessous :

Avec un gain du capteur de débit de : $K_{Cap} = 5 \text{ V.s.l}^{-1}$.

Travail demandé

1- Pour déterminer la fonction de transfert du groupe moto pompe $H_{MP}(p) = H_M(p) \times H_P(p)$, on fait une expérience en alimentant le moteur avec un échelon de tension u(t) = 20 V puis on relève la tension $u_m(t)$ à la sortie du capteur de débit. On obtient alors le graphe ci-dessous :

Exprimer numériquement la fonction de transfert du groupe moto pompe : $H_{MP}(p) = \frac{Q(p)}{U(p)}$.

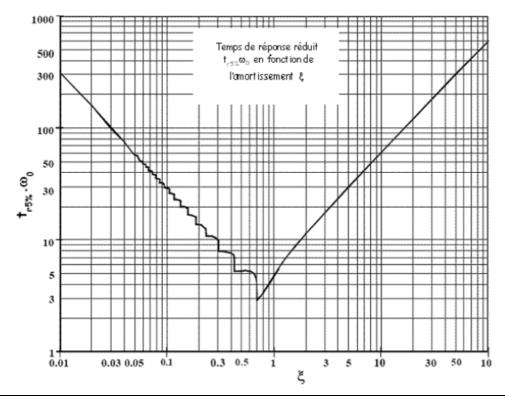
Regulation de jet.docx page 1/2

- **2-** Quel doit être le gain de l'adaptateur K_A pour un fonctionnement normal de l'asservissement : Un écart $\epsilon(p)$ nul lorsque la réponse Q(p) est égale à la sortie $Q_C(p)$.
- 3- On utilise un correcteur proportionnel de gain K_P . En déduire en fonction de K_P , l'expression sous sa forme canonique de la fonction de transfert en boucle fermé du système : $H_{Prop}(p) = \frac{Q(p)}{Q_c(p)}$.

Le cahier des charges du système impose :

 1^{ier} critère
The Une erreur statique en réponse à un échelon inférieure à 5% : $\epsilon_S \leq 0.05$

 $2^{\text{ième}}$ critère Tun dépassement de la valeur finale inférieur à 5% : $D_{\%} \le 0.05$


4^{ième} critère
• Une erreur de trainage en réponse à une rampe de pente $a = 0.4 \, l.s^{-1}$ inférieure à $0.05 \, l.s^{-1}$: $\varepsilon_t \le 0.05 \, l.s^{-1}$

4- Déterminer les deux conditions sur le gain K_P nécessaires pour respecter les deux premiers critères du cahier des charges. Conclure sur l'adaptation du correcteur proportionnel.

Pour la suite, on utilise un correcteur proportionnel intégral de fonction de transfert :

$$C(p) = \frac{K_C.(1 + \tau_C.p)}{p}$$

- 5- Ce correcteur s'obtient par la somme d'une correction proportionnelle de gain K_P et d'une correction intégrale de gain K_i : $C(p) = K_p + \frac{K_i}{p}$. En déduire les gains K_p et K_i en fonction de K et τ_C .
- **6-.** La constante de temps du correcteur PI est choisie de manière à ce que τ_C compense la plus grande constante de temps du moteur. Calculer en fonction de K, la fonction de transfert en boucle fermé de cet asservissement, notée $H_{PI}(p)$. Et en déduire la condition sur la valeur de K_C permettant de respecter la deuxième contrainte du cahier des charges. Et en vous aidant de l'abaque ci-dessous conclure sur la capacité de ce correcteur à respecter l'intégralité du cahier des charges et déterminer les gains K_i et K_p . correspondant à la valeur maximale de K_C .

Regulation de jet.docx page 2/2