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Propriétés de la FTBO et performances de la FTBF 

1- Simplification des schémas blocs 

1.1- Objectif de la simplification 
Lorsque l’on a un asservissement décrit par un schéma bloc, il souvent préférable de simplifier au 

mieux ce schéma bloc afin de le réduire à une seule boucle avec un retour unitaire. Comme sur le schéma 

bloc ci-dessous. Ce schéma bloc fait alors apparaitre : 

  La fonction de transfert du correcteur en général notée : C(p) 

  La fonction de transfert en amont de la perturbation. Ici notée : H1(p) 

  La fonction de transfert en aval de la perturbation. Ici notée : H2(p) 
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La Fonction de Transfert en Boucle Ouverte : FTBO est la fonction de transfert de la sortie du 

comparateur au retour à ce même comparateur. Ici : FTBO(p) = 
S(p)
ε(p)

 . Ici : C(p).H1(p).H2(p). 

La Fonction de Transfert en Boucle ouverte non corrigée : FTBONC est la FTBO sans le 

correcteur. C'est-à-dire la FTBO pour une fonction de transfert du correcteur C(p) = 1 

L’objectif est cependant d’étudier ou de prévoir les performances de la Fonction de Transfert en 

Boucle Fermée : FTBF qui sont celles de l’asservissement. Ici : FTBF(p) = 
S(p)
E(p)

 . 

Bien sur la formule de Black permet d’établir que : FTBF = 
FTBO

1 + FTBO
 

Une manière de prévoir les performances de la FTBF (ou de les modifier) est de calculer cette 

FTBF en fonction des constantes du correcteur puis de prévoir (ou modifier) ses performances en fonction 

de ces constantes. Cependant, cela limite beaucoup les possibilités et en fait impose quasiment à ne 

choisir pour le correcteur qu’un seul paramètre et à la condition que la FTBF soit une fonction de transfert 

bien connue, soit en générale un premier ou un second ordre simple. Cette méthode limite donc les 

possibilités de dimensionner un correcteur afin de répondre aux différents critères du cahier des charges. 

Une autre méthode, beaucoup plus performante consiste à établir les liens entre les propriétés de la 

FTBO et les performances de la FTBF. 

La FTBO étant uniquement le produit de la Fonction de Transfert du Correcteur et la FTBO non 

corrigée : FTBO(p) = C(p). FTBONC(p) il sera beaucoup plus facile de prévoir (ou 

modifier) les performances de la FTBF. 

Ce cours a donc pour objectif de : 

 Maitriser les techniques de simplification des schémas blocs. 

 Etablir les liens entre les propriétés de la FTBO et les performances 
de la FTBF et donc de l’asservissement 

Nous verrons entre autre que toutes les performances d’un asservissement (ou au minimum les 

valeurs approchées de celles-ci) peuvent être prédites par les diagrammes de Bode de la FTBO. 
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1.2- Exemple de simplification sur un cas classique de structure d’asservissement 
Soit l’asservissement décrit par le schéma bloc ci-dessous : 
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1.2.1- Réduction de la boucle interne 

L’objectif est ici de réduire le schéma bloc à uniquement deux blocs entres lesquels la perturbation 

agit directement en venant s’additionner ou se soustraire. (ici se soustraire). On a donc : 

+
-

Pe(p)

-
+ A3(p)

L1(p) L2(p)
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A- Méthode par modification du 1ier schéma bloc pour aller vers le second : 

 

Dans un 1
ier

 temps on 

déplace le comparateur qui 

est au centre de la boucle en 

amont de la boucle. 

 

Le schéma bloc est 

alors équivalent à : 

 

+

Pe(p)

-
+ A3(p)

L1(p)
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Puis on déplace le 

nouveau bloc sur la chaine 

directe. 

Le schéma bloc est 

alors équivalent à : 

+
-

A3(p).A4(p)
L1(p)

A5(p)

L3(p)
+
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On obtient donc : B1(p) = A3(p) et : B2(p) = 
A4(p)

1 + A3(p).A4(p).A5(p)
 

B- Méthode par le principe de superposition : 

Le principe de superposition nous permet d’écrire : L3(p) = H1(p).L1(p) + H2(p).Pe(p) avec : 

Pour le premier schéma bloc : 

H1(p) = 






L3(p)

L1(p) Pe(p)=0
 = 

A3(p).A4(p)
1 + A3(p).A4(p).A5(p)

 

H2(p) = 






L3(p)

Pe(p) L1(p)=0
 = 

−A4(p)
1 + A3(p).A4(p).A5(p)

 

Pour le second schéma bloc : 

H1(p) = 






L3(p)

L1(p) Pe(p)=0
 = B1(p).B2(p) 
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
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

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D’où : B2(p) = 
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
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
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 × 
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C- Méthode par la lecture du schéma bloc : 

Le principe de superposition nous permet d’écrire : L3(p) = H1(p).L1(p) + H2(p).Pe(p) avec  pour le 

2
nd

 chéma bloc : H1(p) = B1(p).B2(p) H2(p) = −B2(p) et par lecture du 1
ier

 schéma bloc : 

L3(p) = A4(p).[ ]L2(p) − Pe(p)  = A4(p).[ ]A3(p).{ }L1(p) − A5(p).L3(p)  − Pe(p)  

Ensuite par calcul : L3(p) = A4(p).A3(p).L1(p) − A4(p).A3(p).A5(p).L3(p) − A4(p).Pe(p) 

 L3(p).[ ]1 + A3(p).A4(p).A5(p)  = A3(p).A4(p).L1(p) − A4(p).Pe(p) 

Et donc : L3(p) = 
A3(p).A4(p)

1 + A3(p).A4(p).A5(p)
.L1(p) − 

A4(p)
 1 + A3(p).A4(p).A5(p)

.Pe(p) 

D’où par identification : B2(p) = 
A4(p)

1 + A3(p).A4(p).A5(p)
  B1(p) = A3(p) 

1.2.2- Retour unitaire 

Reste ensuite à réduire le schéma bloc ci-dessous 
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On commence par déplacer le repiquage du capteur sur la réponse (tout à droite) on obtient alors : 
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En général, la boucle de retour est un gain pur : 
A8(p)

A7(p)
 = C

te
 . Et on a un fonctionnement normale de 

l’asservissement : εEC(p) = 0 pour S(p) = E(p)  on obtient dans ce cas : A1(p) = 
A8(p)
A7(p)

 

Le schéma bloc de l’asservissement est alors équivalent au schéma bloc à retour unitaire : 
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-
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1.2.3- Synthèse 

D’où le schéma bloc avec un retour unitaire : 

C(p)
-

+ +
-E(p)

Pe(p)

εer(p)

Correcteur

H1(p) H2(p)
S(p)

Avec la FTBO de cet asservissement : 

HBO(p) = C(p).H1(p).H2(p) 
Les fonctions de transfert par rapport à la perturbation : 

 En amont :  F1(p) = C(p).H1(p) 

 En aval :  F2(p) = H2(p) 

A8(p)
A7(p)

 

A6(p).A7(p) 

B2(p).A6(p).A7(p) A1(p).A2(p).B1(p) 
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2- Propriétés de la FTBO et Précision de la FTBF 

2.1- Cas d’un asservissement sans perturbation 

Soit un asservissement sans perturbation modélisé par le 

schéma bloc à retour unitaire ci-contre. 

Si la fonction de transfert F(p) qui est la fonction de 

transfert en boucle ouverte est linéaire elle peut s'écrire sous sa 

forme canonique : 

F(p)
-

+

E(p) S(p)εer(p)

 

FTBO(p) = 
KBO

pα  . N(p)
D(p)

 avec : 

N(p) et D(p) des polynômes en p

de coefficient constant égal à 1

D(p) = 1 + b1.p +…+bd.p
d

N(p) = 1 + a1.p +…+an.p
n

 

 KBO est le gain statique de la FTBO 

 α est la classe de la FTBO (Nombre d'intégrateurs de la FTBO) 

On montre alors qu’on a pour la FTBF une erreur : εerC(t) = lim
t→∞

 (e(t) − s(t)) qui varie suivant : 

 Le type d’entrée : Echelon : e(t) = E0  Rampe : e(t) = v.t  Parabole : e(t) = a.t2
 

 La classe (ou le nombre d’intégrateur) α de la FTBO et pour α = 0 le gain statique de la FTBO 

Voir démonstrations. On retiendra le tableau synthétisant cela : 

εerC(t) Ecart statique en fonction de l'entrée 

Nbr d'intégrateur 

dans la FTBO 

Echelon 

se valeur E0 

Rampe 

de pente v 

Parabole de 

coefficient a 

α = 0 
E0

1 + KBO
 ∞ ∞ 

α = 1 0 
v

KBO
 ∞ 

α = 2 0 0 
2.a
KBO

 

2.1- Cas d’un asservissement avec perturbation 

Soit un asservissement avec 

perturbation modélisé par le schéma 

bloc à retour unitaire ci-contre. 

Si les fonctions de transfert 

F1(p) et F2(p) sont linéaires elles 

peuvent s'écrire : 

F1(p)
-

+ +
-

F2(p)
E(p) S(p)

Pe(p)

εer(p)

 

F1(p) = 
K1

pα1 . 
N1(p)
D1(p)

 et : F2(p) = 
K2

pα2 . 
N2(p)
D2(p)

 avec : 

N1(p), N2(p), D1(p) et D2(p)

des polynômes en p de

 coefficient constant égale à 1
 

 K1 est le gain statique en amont de la perturbation 
 α1 est le nombre d'intégrateurs en amont de la perturbation 
 K2 est le gain statique en aval de la perturbation 
 α2 est le nombre d'intégrateurs en aval de la perturbation 
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2.1.1- Erreur due à la perturbation 

On montre alors qu’on a pour la FTBF une erreur due uniquement à la perturbation (Pour e(t) = 0) : 

εerP(t) = lim
t→∞

 (0 − s(t)) qui varie suivant : 

 Le type de perturbation : Echelon : pe(t) = Pe0  (On n’étudiera que ce cas la) 

 La classe (ou le nombre d’intégrateur) en amont (α1) et en aval (α2) de la perturbation 

 Les gains statiques en amont (K1) et en aval (K2) de la perturbation  

Voir démonstrations. On retiendra le tableau synthétisant cela : 

εerP(t) 
Nombre d'intégrateur en 

aval de la perturbation 

Nombre d'intégrateur en 

amont de la perturbation 
α2 = 0 α2 = 1 

α1 = 0 
Pe0.K2

1 + K1.K2
 

Pe0

K1
 

α1 = 1 0 0 

Remarque : 

Dans ce cours les cas où la perturbation n’est pas une constante ne sont pas étudiés. Dans ces cas il 

faut en revenir au calcul de la FTBF puis appliquer le théorème de la valeur finale. 

2.1.2- Erreur totale : due à l’entrée et à la perturbation 

Considérons pour un asservissement : 

  La consigne : e(t) 

  La réponse due à la consigne seule : sC(t) 

  La réponse due perturbation seule sP(t) 

On a les erreurs dues à : 

 à la consigne seule : εerC = lim
t→∞

 ( )e(t) − sC(t)  

 à la perturbation seule : εerP = lim
t→∞

( )0 − sP(t)  

Ainsi que l’erreur totale due à la superposition de la consigne et de la perturbation : 

εerT = lim
t→∞

 ( )e(t) − s(t)   

Du principe de superposition on peut écrire : s(t) = sC(t) + sP(t) 

Soit : εerT = lim
t→∞

( )e(t) − ( )sC(t) + sP(t)  

Ou encore : εerT = lim
t→∞

( )e(t) − sC(t)  + lim
t→∞

( )0 − sP(t)  

Du principe de superposition on en déduit donc que l’erreur totale due à la consigne et à la 

perturbation s’écrit : 

εerT = εerC + εerP 
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3- Condition graphique de stabilité : Critère du revers ou critère graphique 

3.1- Diagrammes de Black 
Le diagramme de Black d'une fonction de transfert est un diagramme permettant de présenter 

l'analyse fréquentielle de la fonction de transfert. Il est hors programme en CPGE mais est intéressant 
pour présenter le critère du revers. Il représente le lieu dans le plan de Black (Phase en Abscisse et 

Gain dynamique en Ordonnée) des point A dont les abscisses et l'ordonnées sont définies par : 

 
  →
OA = 

arg(H(j.ω))
20.log(|H(j.ω)|)

 pour ω ∈  [0,+∞] : 

4.2- Critère du revers dans Black 
On démontre, en utilisant le théorème de 

Cauchy dans le plan complexe (Hors programme 

en mathématiques en CPGE), que la condition 

fondamentale vue précédemment se traduit par la 

règle suivante : 

Un système asservi linéaire (FTBF) est 
stable si la FTBO est stable et, dans le plan de 
Black, en décrivant le lieu de la FTBO pour des 
pulsations ω croissantes, on laisse le point 
critique (−1) de coordonnées (-180,0) à droite du 
lieu. 

 

 

 

4.2- Critère du revers dans le diagramme de Bode 
Le critère du revers dans Bode s'énonce de manière simplifiée de la manière suivante : 

La FTBF est stable SI la FTBO est stable ET SI pour cette FTBO : 

La phase est supérieure à −180° lorsque 
le gain dynamique en décibel est nul à ω0dB 

ET 

Le gain dynamique en décibel est négatif 
lorsque la phase est égale à −180° à ω−180° 

GdBBO(ω0dB) = 0 dB
ϕBO(ω0dB) > − 180°

 

ET 

ϕBO(ω−180°) = − 180°
GdBBO(ω−180°) < 0 dB

 

Lecture graphique sur le diagramme de Bode 

 

Marges de stabilité 
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4.3 -Marges de la FTBO et allure de la réponse temporelle de la FTBF 
Les marges de gain et de phase sont des indicateurs de la stabilité. Il y a des liens entre ces deux 

marges (déterminée sur la FTBO) et la réponse temporelle de la FTBF. 

 Si une de ces deux marges (déterminées sur la FTBO) est négative alors la FTBF est instable 

 Si la marge de phase (déterminée sur la FTBO) est trop faible la réponse temporelle de la FTBF 

présentera un dépassement de la valeur finale important. 

 Si la marge de gain (déterminée sur la FTBO) est trop faible la réponse temporelle de la FTBF 

présentera une progression vers la valeur finale irrégulière. 

 

La régularité de la réponse temporelle 

est difficile voir impossible à quantifier. 

Le dépassement de la valeur finale D% 

lui est mesurable. En revanche il est difficile 

d’établir un lien clair entre le dépassement 

relatif D% de la réponse de la FTBF et la 

marge de phase Mϕ déterminée sur la FTBO. 

Sauf pour le second ordre où ce lien peut 

être établi. 

 

On ne le démontrera pas mais Le 

graphe ci-contre donne une estimation de la 

marge de phase en fonction du coefficient 

d’amortissement et de la marge de phase. 
 

Valeurs usuelles des marges de stabilité 

Marges de gain : Souvent on prend une marge de phase comprise entre 40° et 75° 

Marges de gain : Souvent on prend une marge de gain comprise entre 12dB et 20 dB. 
Quoiqu’il en soit en concours les critères de stabilité sur les marges de phase et de gain sont 

systématiquement donnés par le cahier des charges. 
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5- Rapidité de la FTBF et Pulsation de coupure de la FTBO 

5.1- Temps d’établissement 

Si la réponse temporelle présente un premier 

maximum supérieur à S∞ ; C’est le cas lorsque la 

marge de phase est inférieure à environ 80-90° 

alors le temps d’établissement : 

te est la date à laquelle on a ce 
premier maximum. 

Si la réponse temporelle ne présente pas de 

maximum (Pas de dépassement de la valeur finale) 

ou que le premier maximum est inférieure à S∞ ; 

C’est le cas lorsque la marge de phase est proche  

ou sipérieure à 90° alors le temps d’établissement : 

te est le temps de réponse à 5% 
te = t5%. 

Exemples de réponses temporelles indicielle 

 

5.2- Règle empirique 

En général on constate que l’on a la relation : te.ω0dB ≈ 3 
Remarque cette règle est empirique et n’est pas vraiment précise. Elle permet cependant de choisir 

une pulsation de coupure de la FTBO pour obtenir un temps de réponse à 5% de la FTBF. 

6- Principe de la correction - Synthèse 

Les trois qualités d'un asservissement sont :  La précision 

  La rapidité ou vélocité  La stabilité ou amortissement 

Afin d'améliorer les performances de la 

FTBF on insère dans la FTBO un correcteur entre 

l'écart et la commande qui va donc modifier la 

FTBO, et notamment sa réponse fréquentielle. 

La modification des performances s'analyse 

donc assez simplement sur la modification des 

lieux de Bode de la FTBO de la manière suivante : 

 Pour améliorer la précision il faut augmenter 
le gain dans le domaine des basses pulsations 

 Pour améliorer la vélocité il faut augmenter 
la pulsation de coupure à 0 dB de la FTBO : 
ω0dB : Tirer la courbe de gain vers la droite.  

 Pour avoir une bonne stabilité il faut augmenter l'amortissement qui correspond aux marges de 
phases Mϕ et de gain MG. 

Il n'y a pas de contradiction entre les deux critères de performance 
que sont la précision et la rapidité. Mais ces critères entrent en contraction 
avec les critères de stabilité. 


