Asservissement rappels 3 Diagramme de Bode - Identification - Tracés

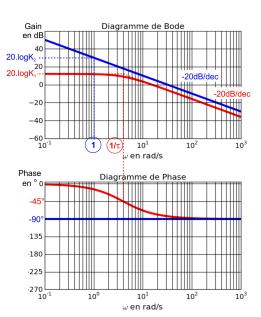
Spé MP-MP* 2025-2026

Lycée Thiers Marseille

1 - Diagramme de Bode du premier ordre

$$H_1(p) = \frac{K_1}{1 + \tau . p}$$

$$H_2(p)=\frac{K_2}{p}$$

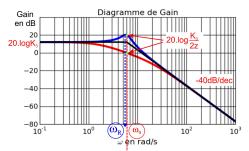


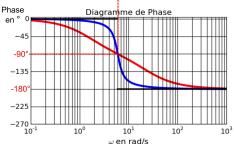
Rappels 3 - Diagramme de Bode, Identification, Tracés 2 / 12

2 - Diagramme de Bode du deuxième ordre

$$H_3(p) = \frac{K_3}{1 + \frac{2.z}{\omega_0} \cdot p + \frac{p^2}{\omega_0^2}}$$

$$\omega_R = \omega_0.\sqrt{1-2.z^2}$$



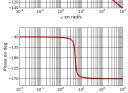


3 - Identification

Méthode d'identification fréquentielle

- Proposer et justifier un modèle
 - ⇒ Faire apparaître les coefficients caractéristiques (forme canonique)
- Déterminer les coefficients
 - ⇒ Choisir un ordre de lecture des coefficients
 - ⇒ Tracer les points de lecture des coefficients

Exemple



3.1 - Identification: Proposer et justifier un modèle

BF ($\omega \rightarrow 0$)

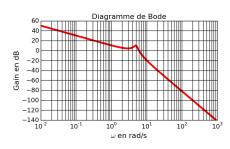
- GdB de pente -20 dB/dec
- \bullet $\phi \rightarrow -90^{\circ}$
- ⇒ Présence d'un Intégrateur

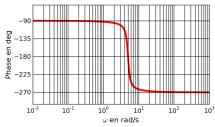
HF ($\omega \to \infty$)

- GdB de pente -60 dB/dec
- $\phi \rightarrow -270^{\circ}$
- ⇒ Ordre 3

Le modèle proposé est le produit d'un intégrateur par un second ordre :

$$H(p) = \frac{K}{p.(1 + \frac{2.z}{\omega_0}.p + \frac{p^2}{\omega_0^2})}$$





Les coefficients à identifier sont K, z et ω_0

3.2 - Identification : Déterminer les coefficients

$$H(p) = \frac{K}{p.(1 + \frac{2.z}{\omega_0}.p + \frac{p^2}{\omega_0^2})}$$

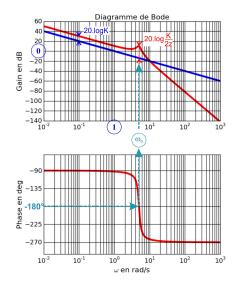
 \bullet ω_0 le plus facile à lire : 2nd ordre $\varphi_{ordre2}(\omega_0) = -90^{\circ}$ + 1 intégrateur $\Rightarrow \varphi(\omega_0) = -180^{\circ}$

$$\omega_0 = 5 rad/s$$

- on soustrait l'intégrateur pour lire K :
- **3** en BF : $\omega \rightarrow 0 \Rightarrow 20.logK = 10dB$

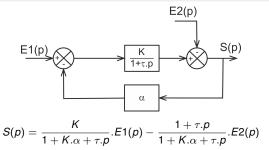
 \bullet en $\omega_0 \Rightarrow 20.log\frac{K}{2} = 24dB$

$$z = 0.1$$



4.1 - Fonction de transfert à zéros : Exemple - Définitions

Exemple : Schéma-blocs avec perturbation



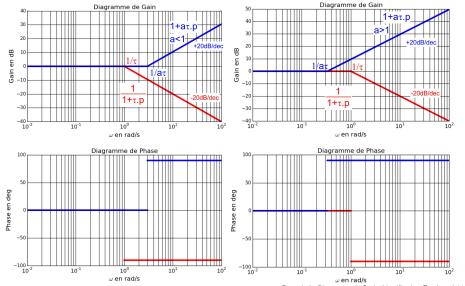
Fonction de transfert à zéros

$$F(p) \qquad F(p) = \frac{S(p)}{E(p)} = \frac{1 + a.\tau.p}{1 + \tau.p}$$

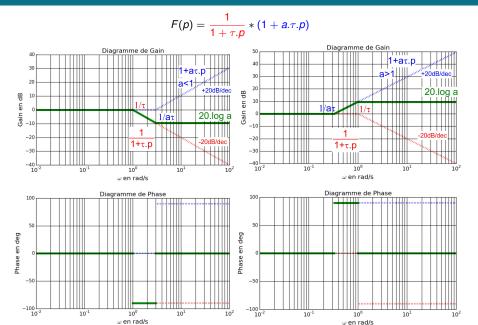
On appelle **pôles** les racines du dénominateur d'une fonction de transfert. On appelle **zéros** les racines du numérateur d'une fonction de transfert. Une fonction de transfert à zeros est donc une fonction possédant des zéros.

4.2 - Fonction de transfert à zéros : Diagramme de Bode

$$F(p) = \frac{1}{1 + \tau \cdot p} * (1 + a \cdot \tau \cdot p)$$



4.2 - Fonction de transfert à zéros : Diagramme de Bode



Rappels 3 - Diagramme de Bode, Identification, Tracés

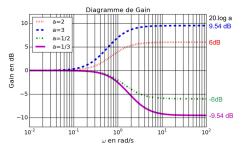
4 - Fonction de transfert à zéros

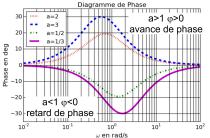
La réponse harmonique de ce type de fonction est intéressante car représentative de nombreux correcteurs.

$$F(p) = \frac{1 + a.\tau.p}{1 + \tau.p}$$

On peut montrer que pour $\omega_0 = \frac{1}{\tau \cdot \sqrt{a}}$:

- $\varphi_{\mathsf{M}} = \varphi(\omega_0)$ (M: min si a<1 ou max si a>1)
- inflexion maximale de GdB

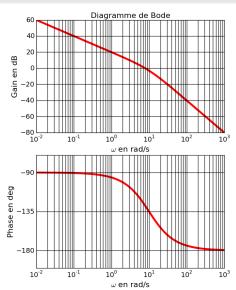




5 - Exercices

Exercice 1 : Identification fréquentielle

Identifier la fonction de transfert H1(p) du système à partir de son diagramme de Bode.



5 - Exercices

Exercice 2 : Tracé d'un diagramme de Bode FT à zéros

Tracer les diagrammes de Bode asymptotique et réel de la fonction $H_2(p)$.

$$H2(p) = \frac{1+0,33.p}{1+0,125.p}$$

