Asservissement rappels 4

Précision des systèmes asservis

Spé MP-MP* 2025-2026

Lycée Thiers Marseille

1 - Critère de précision des systèmes asservis

Le **critère de précision** est l'**erreur** $E_r(t)=e_c(t)$ -s(t) entre la consigne $e_c(t)$ (valeur visée) et la sortie s(t) (valeur atteinte). Ces deux grandeurs doivent être de **même nature**.

On souhaite que la sortie s(t) évolue en fonction du temps, conformément à la consigne $e_c(t)$. Le fonctionnement idéal correspond à une erreur $E_r(t)=e_c(t)-s(t)$ nulle à chaque instant. Or en réalité, cette erreur est non nulle car :

- lacktriangle l'entrée $e_c(t)$ varie dans le temps. Minimiser l'erreur $E_r(t)$ lorsque l'entrée du système varie, c'est résoudre un problème de **poursuite**,
- ② des perturbations se superposent au signal utile du système. Minimiser l'erreur $E_r(t)$ malgré l'existence de ces perturbations, c'est résoudre un problème de **régulation**.

Erreur Statique $arepsilon_{\infty} = \lim_{t o +\infty} (oldsymbol{e}_c(t) - oldsymbol{s}(t))$

On étudie uniquement la précision en régime permanent.

Lorsque le système est soumis à

- un échelon $e_0.u(t) \stackrel{\mathcal{L}}{\to} \frac{e_0}{\rho}$, on parle d'erreur statique (en position), notée E_{RS} ,
- une rampe $a.t.u(t) \stackrel{\mathcal{L}}{\to} \frac{a}{p^2}$, on parle d'erreur statique en vitesse, notée E_{RV} (ou erreur de traînage ou de poursuite).

2 - Calcul de la précision en fonction de la FTBO

On se place dans le cas du retour unitaire dans tout ce qui suit.

FTBO(P)= H(P) =
$$\frac{K_{BO}}{\rho^{\alpha}} \cdot \frac{1 + ... + b_m.p^m}{1 + ... + a_n.p^n}$$

 ${\it K_{BO}}$: gain en Boucle Ouverte, α : nombre d'intégrateurs dans la boucle = classe du système L'étude de $\lim_{t \to +\infty} (e_c(t) - s(t))$ dans le domaine de Laplace permet de l'exprimer en fonction des caractéristiques de la FTBO : ${\it K_{BO}}$ et α :

Nature de l'entrée		Classe du système			
e _c (t)	E _c (p)		α = 0	α = 1	<i>α</i> > 1
u(t)	$\frac{1}{p}$	E _{RS} :	$\frac{1}{1+K_{BO}}$	0	0
t.u(t)	$\frac{1}{p^2}$	E _{RV} :	∞	$\frac{1}{K_{BO}}$	0