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1.1 Modélisation
Modèle de connaissance - Modèle de comportement

H(p) ?
E(p) S(p)e(t) s(t) L

Modèle de connaissance
Modèle établi à partir de l’équation
différentielle du système.

an.
dn s(t)
dtn

...+a0.s(t) = bm.
dm e(t)
dtm

+...+b0.e(t)

↓ L

(an.pn... + a0).S(p) = (bm.pm + ... + b0).E(p)

H(p)=
S(p)
E(p)

=
b0 + ...+ bm.pm

a0 + ...+ an.pn

Modèle de comportement
Modèle proposé par identification à partir
de la réponse temporelle s(t) :

e0

entrée e(t)

mesure
modèle

K.e0

 t

sortie s(t) :

H(p) =
S(p)
E(p)

=
K

1 + τ.p

Remarque : Le système étudié est dit causal (n ≥ m) : la sortie à un instant donné n’est pas influencée par le
futur de l’entrée.
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1.2 Modélisation
Approximation linéaire autour d’un point de fonctionnement

La loi Entrée-sortie d’un mécanisme est souvent non linéaire.

Linéarisation autour d’un point de fonctionnement
On recherche un modèle linéaire dans une zone limitée autour du point "d’intérêt", on prend
comme modèle approché la tangente à la courbe en ce point appelé point de fonctionnement.

Point de 

fonctionnement
Zone de validité de 

l’approximation

E(p) S(p)


s(t)

e(t)

Courbe caractéristique 
du bloc


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1.3 Modélisation
Schéma minimal à retour unitaire - Équation caractéristique - Pôles

Tout schéma-blocs d’un asservissement bien réglé peut se mettre sous la forme d’un schéma
minimal à retour unitaire

correcteur

H(p) 
(p)

adaptateur

capteur

Mes(p)

H(p)+
-

S(p)E(p)
C(p)

Modèle initial

+
-

Consigne SortieEcart

Mesure



A
S(p)E(p)

C(p)

Fonction de Transfert en Boucle Ouverte/Fermée

FTBO(p) =
Mes(p)
ε(p)

= C(p).H(p) FTBF(p) =
S(p)
E(p)

=
C(p).H(p)

1 + C(p).H(p)
=

FTBO(p)
1 + FTBO(p)

si retour unitaire

Équation caractéristique et pôles de la Fonction de Transfert en Boucle Fermée

Une fonction de transfert s’écrit toujours sous la forme F (p) =
N(p)
D(p)

.

D(p) = 0 est l’équation caractéristique de F(p). Les racines de D(p) sont les pôles de F(p).

1 + FTBO(p) = 0 est l’équation caractéristique de FTBF(p)
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2.1 Stabilité asymptotique
Étude des pôles de la FTBF

Stabilité BIBO : Entrée Bornée-Sortie Bornée
Un système est stable si l’application d’un signal borné (entrée ou perturbation) produit un signal
de sortie borné.

Stabilité asymptotique
Un système est asymptotiquement stable si, et seulement si, tous les pôles de sa fonction de
transfert (FTBF(p)) sont à partie réelle strictement négative.
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2.2 Stabilité asymptotique
Prise en compte de la perturbation

+
-

H(p)
S(p)

(p)

E(p)M(p)

Ep(p)

+
+

F(p)
S(p)

H(p)+
-

Ec(p)
C(p)

(p)

M(p)

H(p)+
-

S(p)E(p)
C(p)

S(p) =
C(p).H(p).F (p)

1 + C(p).H(p).F (p)
.Ec(p) +

F (p)
1 + C(p).H(p).F (p)

.Ep(p)

Équation caractéristique et pôles de la Fonction de Transfert en Boucle Fermée
Avec ou sans perturbation l’équation caractéristique de FTBF(p) est :

1+ C(p).H(p). F(p) = 1 + FTBO(p) = 0

La FTBO est indépendante de la perturbation.
Les pôles de la FTBF sont indépendants de la perturbation.

Conclusion : La stabilité n’est pas influencée par les perturbations.
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3.1 Précision sous condition préalable de stabilité
Tableau de l’erreur statique

+
-

H(p)
S(p)

(p)

E(p)
M(p)

P(p)

+
-

+
+

H(p) F(p)
S(p)(p)E(p)

M(p)

H(p)+
-

S(p)E(p)
C(p)

FTBO(p)= C(p).H(p) =
KBO
pα

.
1 + ...+ bm.pm

1 + ...+ an.pn

KBO : gain en Boucle Ouverte, α : nombre d’intégrateurs dans la boucle = classe du système

Erreur statique totale en régime stationnaire

ER∞ = lim
t→+∞

(e(t) − s(t)) = lim
p→0

p.(E(p) − S(p))

Nature de l’entrée Classe du système

e(t) E(p) α = 0 α = 1 α =2 α > 2

e0.u(t)
e0
p

ERS :
e0

1 + KBO
0 0 0

a.t.u(t)
a
p2

ERV : ∞
a

KBO
0 0

a.t2.u(t)
a
p3

ERA : ∞ ∞
a

KBO
0
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3.2 Précision sous condition préalable de stabilité
Influence de la perturbation

+
-

H(p)
S(p)

(p)

E(p)M(p)

Ep(p)

+
+

F(p)
S(p)

H(p)+
-

Ec(p)
C(p)

(p)

M(p)

H(p)+
-

S(p)E(p)
C(p)

C(p).H(p) =
KH
pαH

.
1 + ...+ bm.pm

1 + ...+ an.pn

F(p) =
KF
pαF

.
1 + ...+ cM .pM

1 + ...+ dN .pN

FTBO (p)= C(p).H(p).F(p) avec KBO = KH .KF

Erreur statique totale en régime stationnaire

lim
p→0

p.(Ec(p)− S(p))= lim
p→0

p.Ec(p)
(
1−

C .H.F
1 + C .H.F

)
︸ ︷︷ ︸

Erreur système non perturbé

- lim
p→0

p.Ep(p).
F

1 + C .H.F︸ ︷︷ ︸
Influence de la pertubation

Pour une perturbation de type échelon :

ep(t) = ep .u(t)

on ajoute à l’erreur statique calculée précédem-
ment l’influence de la perturbation ERSpert .

ERpert∞ αH = 0 αH > 0

αF = 0
−ep .KF

1 + KF .KH
0

αF > 0
−ep
KH

0
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4.1 Rapidité - Temps de réponse à 5 %
Rappels

1er ordre

H(p) =
K

1 + τ.p

t5% = 3.τ

2nd ordre

H(p) =
K

1 +
2.ξ
ω0
.p +

1
ω2
0
.p2

t5% → abaque t5%.ω0 = f (ξ)









Pseudo-période 

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4.2 Rapidité - Temps de réponse à 5 %
Cas du 2nd ordre asservi

Réglage d’un système du 2nd ordre asservi

ξ 0 0,43 0,69 1 >1

t5%.ω0 ∞ 5,3 3 4,7 grand

DR1 en % 100 20 5 0 0
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5 - Pôles Dominants

Pôles Dominants
Les pôles du système les plus proches de l’axe des imaginaires sont qualifiés de pôles dominants,
ils ont une contribution prépondérante sur la réponse du système.

Exemple 1

T (p) =
1

(1 + 0, 5.p).(1 + 0, 05.p)

T1(p) =
1

(1 + 0, 5.p)
avec τ1 = 0, 5s, p1 = −2

T2(p) =
1

(1 + 0, 05.p)
avec τ2 = 0, 05s, p2 = −20

τ1 >> τ2

T (p) =
1

(1 + τ1.p).(1 + τ2.p)
≈

1
(1 + τ1.p)

p1 est un pôle dominant par rapport à p2
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5 - Pôles Dominants

Exemple 2

H2(p) =
1

1 + 0, 24.p + 0, 24.p2
, pôles complexes conjugués : p12 = −0, 5 ± 2.j

H3(p) =
1

(1 + 0, 05.p).(1 + 0, 24.p + 0, 24.p2)
, pôles : p12 = −0, 5 ± 2.j, p3 = −20

H3(p) =
1

(1 + 0, 05.p).(1 + 0, 24.p + 0, 24.p2)
≈

1
1 + 0, 24.p + 0, 24.p2

p1 et p2 sont les pôles dominants, ils imposent le comportement du système.
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